

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Bounds on the independence number and signless Laplacian index of graphs

Huiqing Liu^{a,*,1}, Mei Lu^{b,2}

ARTICLE INFO

Article history: Received 14 December 2013 Accepted 31 October 2017 Available online 3 November 2017 Submitted by R. Brualdi

MSC: 05C50 15A18

Keywords: Graph Signless Laplacian index Independence number

ABSTRACT

In this paper, we give some bounds on the signless Laplacian index of graphs in terms of independence number. In addition, these results disprove a conjecture in [3] involving the signless Laplacian index and independence number of graphs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Through this paper, we consider simple, undirected and connected graphs. Let G = (V(G), E(G)) be a graph. For $v \in V(G)$, the neighborhood of v, denoted by N(v), is the set of all vertices in G adjacent to v. Set d(v) = |N(v)| and $m(v) = \sum_{u \in N(v)} d(u)/d(v)$.

 ^a Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistic, Hubei University, Wuhan 430062, China
^b Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

^{*} Corresponding author.

E-mail addresses: hql 2008@163.com (H. Liu), mlu@math.tsinghua.edu.cn (M. Lu).

Partially supported by NNSFC (No. 11571096).

² Partially supported by NNSFC (Nos. 61373019, 11771247).

For $X, Y \subseteq V(G)$, we let $\partial(X, Y)$ denote the set of edges of G with one end in X and the other end in Y, and let G[X] be the subgraph induced by X. If $Y = V(G) \setminus X$, then we set $\partial(X) := \partial(X, Y)$ and $d(X) = |\partial(X)|$. A clique in a graph G is a subset C of V(G) such that every two vertices in C are connected by an edge. The clique number of a graph G, denoted $\omega(G)$, is the number of vertices in a maximum clique of G. An independent set is a set of vertices in a graph, no two of which are adjacent. The independence number of a graph G, denoted by $\alpha(G)$, is the numbers of vertices of the largest independent set in G. Let P_n , C_n , K_n and $K_{p,n-p}$ denote the path, cycle, complete graph and complete bipartite graph of order n, respectively.

Let G and H be two disjoint graphs. The disjoint union of G and H, denoted G+H, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If $G_1 \cong \cdots \cong G_k$, we write kG_1 for $G_1 + \cdots + G_k$.

For a graph G, let $D(G) = \operatorname{diag}(d(v_1), d(v_2), \dots, d(v_n))$ be the diagonal matrix of vertex degrees and A(G) be the adjacency matrix of G. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix of the graph G. The matrix Q(G) is symmetric and nonnegative, and, when G is connected, it is irreducible. Thus Q(G) is positive semidefinite and its eigenvalues can be arranged as:

$$q_1(G) \ge q_2(G) \ge \cdots \ge q_n(G) \ge 0.$$

The largest eigenvalue of Q(G) is called the *signless Laplacian spectral radius* or the *signless Laplacian index* of Q(G).

In recent years, the signless Laplacian index has received increasing attention (see [1–5], [7–11]). Recently, Hansen and Lucas [3] proposed some conjectures of the form

$$l(n) \le q_1(G) \oplus i(G) \le u(n),$$

where \oplus is one the four operations $+,-,\times,/$ and i(G) is another invariant chosen among diameter, radius, girth, independence number, clique number, chromatic number and so on. Liu and Lu [7] [8] solved two conjectures (see [3], Conjectures 17–18) on the signless Laplacian index involving the diameter and radius, respectively. He, Jin and Zhang [5] disproved two conjectures (see [3], Conjectures 29 and 31) on the signless Laplacian index. The purpose of this paper is to study the following conjecture involved the independence number of graphs.

Conjecture 1.1 ([3, Conjecture 27]). Let G be a connected graph of order $n \geq 4$. Then

$$4 + \left| \frac{n}{2} \right| \le q_1(G) + \alpha(G), \text{ if } n \text{ is odd,}$$
 (1)

$$2(n-1) \le q_1(G) \cdot \alpha(G). \tag{2}$$

The bound for (1) is attained by and only by the cycle C_n when n is odd. Moreover, if n is even, then $q_1(G) + \alpha(G)$ is minimal for the graph C_n^* of order $n \geq 8$, where C_n^* is a graph obtained from two cycles of order 2|n/6| + 1 by linking them by a path.

Download English Version:

https://daneshyari.com/en/article/8898040

Download Persian Version:

https://daneshyari.com/article/8898040

Daneshyari.com