Polarity and separation of cones

Valeriu Soltan
Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA

A R T I C L E I N F O

Article history:

Received 28 March 2017
Accepted 22 October 2017
Available online 24 October 2017
Submitted by R. Brualdi

MSC:

90C25
52A20
15A39
Keywords:
Cone
Convex
Polar
Hyperplane
Separation

Abstract

Given a closed convex cone $C \subset \mathbb{R}^{n}$ and its polar cone C°, properties of the set $C \cap\left(-C^{\circ}\right)$ are studied. In particular, we solve a problem of Stoker concerning nonemptiness of $\operatorname{rint} C \cap\left(-\operatorname{rint} C^{\circ}\right)$. Based on these properties, new results on separation of C and C° by hyperplanes are established.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We recall that a nonempty set C in the n-dimensional Euclidean space \mathbb{R}^{n} is a cone if $\lambda x \in C$ whenever $\lambda \geqslant 0$ and $x \in C$. (Obviously, this definition implies that the origin o of \mathbb{R}^{n} belongs to C, although a stronger condition $\lambda>0$ can be beneficial; see, e.g., [6].) The cone C is called convex if it is a convex set. In a standard way, the (negative) polar cone C° of C is defined by

[^0]$$
C^{\circ}=\left\{e \in \mathbb{R}^{n}: x \cdot e \leqslant 0 \text { for all } x \in C\right\},
$$
where $x \cdot e$ means the dot (scalar) product of vectors x and e.
Despite a wide usage of polar cones C and C° in various mathematical disciplines, not much is known about the sets
$$
D=C \cap\left(-C^{\circ}\right) \quad \text { and } \quad E=\operatorname{rint} C \cap\left(-\operatorname{rint} C^{\circ}\right),
$$
where $\operatorname{rint} C$ denotes the relative interior of C (we observe the set $-C^{\circ}$ is often called the dual cone of C).

Blumenthal [1] and Dines [2] showed that the existence of positive solutions of certain systems of homogeneous linear inequalities can be geometrically formulated as the property $D \neq\{o\}$ of a suitable convex cone $C \subset \mathbb{R}^{n}$. In this regard Gaddum [4], using a simple argument, proved that $D \neq\{o\}$ if and only if the cone C is not a subspace.

Independently, Stoker [9] asked whether the set E is nonempty and gave a partial affirmative answer by proving that rint $C \cap\left(-C^{\circ}\right) \neq \varnothing$ for the case when C is a closed convex cone in \mathbb{R}^{3}, distinct from a subspace. Another motivation for the study of the sets D and E comes from separation theory. For instance, an assertion of Klee [5] on the existence of a hyperplane specially separating closed convex cones C_{1} and C_{2} in \mathbb{R}^{n} satisfying the condition $C_{1} \cap C_{2}=\{o\}$ can be equivalently reformulated as rint $C_{1}^{\circ} \cap$ $\left(-\operatorname{rint} C_{2}^{\circ}\right) \neq \varnothing$ (see Theorem 4.2 below).

In this paper, we determine the dimensions of the sets D and E and prove that rint $D=E$, as shown in Theorems 3.1 and 3.2. These results allow us to answer affirmatively Stoker's question on the nonemptiness of E (see Corollary 3.1).

The concluding Section 4 contains new assertions on separation of arbitrary convex cones C_{1} and C_{2} in \mathbb{R}^{n} (which refine a result of Klee [5]), and, in particular, on separation of cones C and C° (see Theorems 4.1-4.3 and their corollaries)

2. Notation, terminology, and preliminaries

We follow standard notation and terminology of finite-dimensional convex analysis (see, for instance, the books [7] and [8]). In particular, $\operatorname{cl} F, \operatorname{dim} F, \operatorname{rbd} F$, $\operatorname{rint} F$, and span F stand, respectively, for the closure, dimension, relative boundary, relative interior, and span of a convex set $F \subset \mathbb{R}^{n}$.

For a simplicity of language, we will be dealing with closed convex cones in \mathbb{R}^{n}. Indeed, the obtained results can be easily rewritten for the case of any convex cones, based on the equalities $\operatorname{rint} C=\operatorname{rint}(\mathrm{cl} C)$ and $C^{\circ}=(\mathrm{cl} C)^{\circ}$.

Given a closed convex cone $C \subset \mathbb{R}^{n}$, the set $\operatorname{lin} C=C \cap(-C)$ is called the lineality space of C, and C is called pointed provided $\operatorname{lin} C=\{o\}$. It is known that $\operatorname{lin} C$ is the largest subspace contained in C and $C=C+\operatorname{lin} C$ (see, e.g., [8], Theorems 4.14 and 4.15). Obviously, $C \neq \operatorname{lin} C$ if and only if C is not a subspace. Equivalently, the number

$$
\begin{equation*}
s(C)=\operatorname{dim} C-\operatorname{dim}(\operatorname{lin} C) \tag{1}
\end{equation*}
$$

https://daneshyari.com/en/article/8898075

Download Persian Version:

https://daneshyari.com/article/8898075

Daneshyari.com

[^0]: E-mail address: vsoltan@gmu.edu.

