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We obtain the cardinality of the lattice of characteristic sub-
spaces of a nilpotent Jordan matrix when the underlying field 
is GF (2), the only field where the lattices of characteristic 
and hyperinvariant subspaces can be different. If the charac-
teristic polynomial of the matrix splits in the field, the general 
case can be reduced to the nilpotent Jordan case. Results are 
complex and highly combinatorial, and include the design of 
an algorithm.
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1. Introduction

Let F be a field and A ∈ Mn(F) a matrix. A vector subspace V ⊆ F
n is called invariant 

with respect to A if AV ⊆ V . The subspace V is hyperinvariant if it is invariant for every 
matrix commuting with A, and it is characteristic if it is invariant for every nonsingular
matrix commuting with A.

We denote by Hinv(A) and Chinv(A) the lattices of hyperinvariant and characteristic 
subspaces of A, respectively. Properties of these lattices have been analyzed (see [8,3,4], 
and the more recent papers [1,2,6,7]).

In this paper we determine the cardinality of the lattice of characteristic subspaces of 
a nilpotent Jordan matrix J . Assuming that the characteristic polynomial of J splits in 
the underlying field, this covers the most general case. If F �= GF (2), then Chinv(J) =
Hinv(J) (see [1]), and the cardinality of Hinv(J) is already known and easy to compute 
(see [3]). If F = GF (2), a condition by Shoda ([8]) characterizes when Hinv(J) and 
Chinv(J) do not coincide.

As Hinv(J) ⊆ Chinv(J), we understand

Chinv(J) = Hinv(J) ∪ (Chinv(J) \ Hinv(J)).

Our aim is to obtain the cardinality of Chinv(J) \ Hinv(J) working on F = GF (2). 
For that purpose, we use the characterization of the subspaces in Chinv(J) \ Hinv(J)
obtained in [6]. According to [6], a characteristic nonhyperinvariant subspace X of J can 
be written as a direct sum of two subspaces X = Y ⊕ Z, where Z and Y are associated 
to a so called char-tuple, Y is hyperinvariant with some extra conditions and Z is called 
a minext subspace. In our approach, we find the number of possible char-tuples, and 
the number of minext and hyperinvariant subspaces associated to each char-tuple. We 
obtain the number of minext subspaces through a recurrent formula, and the number of 
hyperinvariant subspaces associated to a char-tuple, through an algorithm.

The results obtained are much more complex than in the hyperinvariant case. They 
involve combinatorial numbers and Gauss binomial coefficients. The algorithm constructs 
a table which generalizes the Pascal matrix.

The paper is structured as follows: In Section 2, we recall basic definitions and 
introduce notation and previous results. In Section 3, we recall the characteriza-
tion of characteristic nonhyperinvariant subspaces obtained in [6]. The cardinality of 
Chinv(J) \ Hinv(J) and the above mentioned algorithm are obtained in Section 4. Fi-
nally, in Section 5 it is shown that the results of the algorithm can also be derived from 
generating polynomials.

2. Preliminaries

Let F be a field. Let Fn be the n-dimensional vector space over F and A ∈ Mn(F) a 
square matrix corresponding to an endomorphism of Fn in a fixed basis.
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