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Abstract

Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal
decomposition into a sum of rank-1 tensors. We find new mild determinis-
tic conditions for the uniqueness of individual rank-1 tensors in CPD and
present an algorithm to recover them. We call the algorithm “algebraic”
because it relies only on standard linear algebra. It does not involve more
advanced procedures than the computation of the null space of a matrix and
eigen/singular value decomposition. Simulations indicate that the new con-
ditions for uniqueness and the working assumptions for the algorithm hold
for a randomly generated I x J x K tensor of rank R> K >J>1>2if R
is bounded as R < (I+J+K —2)/2+ (K — /(I — J)? +4K)/2 at least for
the dimensions that we have tested. This improves upon the famous Kruskal
bound for uniqueness R < (I +.J + K —2)/2 as soon as [ > 3.

In the particular case R = K, the new bound above is equivalent to the
bound R < (I — 1)(J — 1) which is known to be necessary and sufficient for
the generic uniqueness of the CPD. An existing algebraic algorithm (based on
simultaneous diagonalization of a set of matrices) computes the CPD under
the more restrictive constraint R(R—1) < I(I —1)J(J—1)/2 (implying that
R<(J—3(I—-1)/v2+1). We give an example of a low-dimensional but
high-rank CPD that cannot be found by optimization-based algorithms in a
reasonable amount of time while our approach takes less than a second. We
demonstrate that, at least for R < 24, our algorithm can recover the rank-1
tensors in the CPD up to R < (I — 1)(J — 1).
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