

Divergence-free positive symmetric tensors and fluid dynamics

Denis Serre
École Normale Supérieure de Lyon, U.M.P.A., UMR CNRS-ENSL \# 5669, 46 allée d'Italie, 69364 Lyon cedex 07, France

Received 19 May 2017; accepted 7 November 2017

Abstract

We consider $d \times d$ tensors $A(x)$ that are symmetric, positive semi-definite, and whose row-divergence vanishes identically. We establish sharp inequalities for the integral of $(\operatorname{det} A)^{\frac{1}{d-1}}$. We apply them to models of compressible inviscid fluids: Euler equations, Euler-Fourier, relativistic Euler, Boltzman, BGK, etc. We deduce an a priori estimate for a new quantity, namely the space-time integral of $\rho^{\frac{1}{n}} p$, where ρ is the mass density, p the pressure and n the space dimension. For kinetic models, the corresponding quantity generalizes Bony's functional.

© 2017 Elsevier Masson SAS. All rights reserved.

Keywords: Conservation laws; Gas dynamics; Functional inequalities

Notations. The integer $d \geq 2$ is the number of independent variables, which are often space-time coordinates. It serves also for the size of square matrices. If $1 \leq j \leq d$ and $x \in \mathbb{R}^{d}$ are given, we set $\widehat{x_{j}}=\left(\ldots, x_{j-1}, x_{j+1}, \ldots\right) \in$ \mathbb{R}^{d-1}; the projection $x \mapsto \widehat{x_{j}}$ ignores the j-th coordinate. The transpose of a matrix M is M^{T}. If $A \in \mathbf{M}_{d}(\mathbb{R})$, its cofactor matrix \widehat{A} satisfies

$$
\widehat{A}^{T} A=A \widehat{A}^{T}=(\operatorname{det} A) I_{d}, \quad \operatorname{det} \widehat{A}=(\operatorname{det} A)^{d-1} .
$$

Because we shall deal only with symmetric matrices, we have simply $\widehat{A} A=A \widehat{A}=(\operatorname{det} A) I_{d}$. The space of $d \times d$ symmetric matrices with real entries is $\mathbf{S y m}_{d}$. The cones of positive definite, respectively positive semi-definite, matrices are $\mathbf{S P D}_{d}$ and $\mathbf{S y m}_{d}^{+}$. If $u \in \mathbb{R}^{d}, u \otimes u \in \mathbf{S y m}_{d}^{+}$denotes the rank-one matrix of entries $u_{i} u_{j}$.

The unit sphere of \mathbb{R}^{d} is S^{d-1}. The Euclidean volume of an open subset Ω of \mathbb{R}^{d} is denoted $|\Omega|$. If the boundary $\partial \Omega$ is rectifiable, we denote the same way $|\partial \Omega|$ its area, and $d s(x)$ the area element. For instance, the ball B_{r} of radius r and its boundary, the sphere S_{r}, satisfy $\left|B_{r}\right|=\frac{r}{d}\left|S_{r}\right|$. If Ω has a Lipschitz boundary, its outer unit normal \vec{n} is defined almost everywhere.

If $f: \Omega \rightarrow \mathbb{R}$ is integrable, its average over Ω is the number

$$
f_{\Omega} f(x) d x:=\frac{1}{|\Omega|} \int_{\Omega} f(x) d x .
$$

[^0]Given a lattice Γ of \mathbb{R}^{d}, and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a Γ-periodic, locally integrable function, we denote

$$
\int_{\mathbb{R}^{d} / \Gamma} f(x) d x
$$

the value of the integral of f over any fundamental domain. We define as above the average value

$$
f_{\mathbb{R}^{d} / \Gamma} f(x) d x .
$$

For our purpose, a tensor is a matrix-valued function $x \mapsto T(x) \in \mathbf{M}_{p \times q}(\mathbb{R})$. If $q=d$ and if the derivatives make sense (say as distributions), we form

$$
\operatorname{Div} T=\left(\sum_{j=1}^{d} \partial_{j} t_{i j}\right)_{1 \leq i \leq p},
$$

which is vector-valued. We emphasize the uppercase letter D in this context. We reserve the lower case operator div for vector fields.

If $1 \leq p \leq \infty$, its conjugate exponent is p^{\prime}.

Acknowledgments

This research benefited from discussions that I had with various persons, and references that I got from others. I thank warmly Grégoire Allaire, Yann Brenier, Vincent Calvez, Guido de Philippis, Reinhard Illner, Grégoire Loeper, Petru Mironescu, Jean-Christophe Mourrat, Laure Saint-Raymond, Bruno Sévennec and Cédric Villani.

1. Introduction

We first define the mathematical object under consideration.
Definition 1.1. Let Ω be an open subset of \mathbb{R}^{d}. A divergence-free positive symmetric tensor (in short, a $D P T$) is a locally integrable tensor $x \mapsto A(x)$ over Ω with the properties that $A(x) \in \mathbf{S y m}_{d}^{+}$almost everywhere, and Div $A=0$.

The following fact is obvious.
Lemma 1.1 (Congruence.). If A is a DPT and $P \in \mathbf{G} \mathbf{L}_{d}(\mathbb{R})$ is given, then the tensor

$$
B(y):=P A\left(P^{-1} y\right) P^{T}
$$

is also a DPT.

1.1. Motivations: Where do the divergence-free positive symmetric tensors occur?

Most of our examples, though not all of them, come from fluid dynamics, where a DPT contains a stress tensor.
Compressible gas. In space dimension $n \geq 1$, a gas is described by a mass density $\rho \geq 0$, a velocity u and a pressure $p \geq 0$. These fields obey the Euler equations (conservation of mass and momentum)

$$
\partial_{t} \rho+\operatorname{div}_{y}(\rho u)=0, \quad \partial_{t}(\rho u)+\operatorname{Div}_{y}(\rho u \otimes u)+\nabla_{y} p=0 .
$$

Here $x=(t, y)$ and $d=1+n$. The tensor

$$
A(t, y)=\left(\begin{array}{cc}
\rho & \rho u^{T} \\
\rho u & \rho u \otimes u+p I_{n}
\end{array}\right)
$$

is a DPT.

https://daneshyari.com/en/article/8898106

Download Persian Version:

https://daneshyari.com/article/8898106

Daneshyari.com

[^0]: E-mail address: denis.serre @ens-lyon.fr.
 https://doi.org/10.1016/j.anihpc.2017.11.002
 0294-1449/© 2017 Elsevier Masson SAS. All rights reserved.

