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Abstract

We study a model introduced by Perthame and Vauchelet [19] that describes the growth of a tumor governed by Brinkman’s 
Law, which takes into account friction between the tumor cells. We adopt the viscosity solution approach to establish an optimal 
uniform convergence result of the tumor density as well as the pressure in the incompressible limit. The system lacks standard 
maximum principle, and thus modification of the usual approach is necessary.
© 2017 Published by Elsevier Masson SAS.

Keywords: Viscosity solutions; Tumor growth; Front propagation

1. Introduction

We study the following model, which was introduced by Perthame and Vauchelet in [19]. It describes the growth 
of tumors at the cellular level by providing a law relating the cell density, pressure, and cell multiplication. The tumor 
cell density nk :Rn × [0, ∞) → R satisfies,{

∂tnk − div(nkDWk) = nkG(pk),

−ν�Wk + Wk = pk,
(1.1)

where the pressure pk is given by,

pk = k

k − 1
(nk)

k−1.

Here ν is a positive constant and G is a given function that describes the effect that the pressure has on the growth of 
the tumor. We assume G satisfies,

G ∈ C1(R), G′(·) ≤ −ᾱ < 0, and G(PM) = 0 for some PM > 0 and ᾱ > 0. (1.2)
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The main results of [19] concern the limit as k → ∞, or the so-called incompressible limit, of (1.1). This connects 
(1.1) to a system that involves a moving front. If the parameter ν were zero (in other words, if the tumor were governed 
by Darcy’s Law), then the system (1.1) would become,

∂tnk − div(nkDpk) = nkG(pk).

This model for tumor growth has been widely studied, and we refer the reader to the introduction of [19] for a variety 
of references, both about modeling and rigorous mathematical analysis. In particular, in [18], Perthame, Quiròs and 
Vázquez find that the incompressible limit of the above equation is the Hele–Shaw problem with a forcing term. Kim 
and Pozar [16] used viscosity solution methods to improve the result in [18]. The model that we study, (1.1) with 
ν > 0, has been proposed as a better description of tumor growth. Here, the tumor is governed by Brinkman’s Law, 
which takes into account the friction between the tumor cells, and not just of the tumor with its environment. These 
modeling issues are discussed in, for example, [24,6]. For fixed k, the system (1.1) was also studied by Trivisa and 
Webber in [23], who established existence of weak solutions and found a convergent numerical method for (1.1).

Of particular interest in the asymptotic limit is the limiting pressure, which represents the incompressibility condi-
tion. In the inviscid model (ν = 0), the limiting pressure solves a Hele–Shaw type problem and is continuous as long 
as the pressure zone is reasonably regular [18]. However, as illustrated in [19], in the viscous model that we study here 
the limiting pressure is strictly positive on the boundary of its support, and thus is discontinuous. This is an interesting 
contrast to the inviscid model.

Our goal in this paper is to obtain pointwise convergence results in the framework of viscosity solutions theory, 
improving the L1 convergence obtained in [19]. Due to the discontinuity of the limiting pressure, the optimal pointwise 
convergence result one expects is uniform convergence away from the pressure boundary. This is precisely what we 
obtain. In addition, knowing that the pressure converges uniformly then allows us to improve the convergence of the 
Wk as well (see Theorem 1.1 below).

We point out that the system (1.1) does not enjoy the comparison principle – in fact, it is strongly coupled – and 
thus one needs to modify the existing theory in the analysis. To achieve this we follow the approach in [15], where we 
rely on the fact that one component of the system can be considered almost fixed due to its strong convergence: in our 
case that turns out to be the Wk , though their convergence is still weaker than what is available in [15].

Heuristics. Let us briefly recall the formal derivation of the limiting system given in [19] to illustrate additional 
challenges and main ingredients of our analysis in more detail. We denote the limit of (pk, nk, Wk) by (p∞, n∞, W∞). 
Perhaps the easiest equation to guess is the one for W∞:

−ν�W∞ + W∞ = p∞. (1.3)

Next we expect that p∞ is either zero or satisfies p∞ − νG(p∞) = W∞. This is because we can write the nk equation 
in terms of pk as

∂tpk − Dpk · DWk = (k − 1)ν−1pk(Wk − (Id − νG)(pk)), (1.4)

which then translates p∞ as a singular limit of reaction–diffusion equations. Thus it is reasonable to think that p∞
will take value either zero or (Id − νG)−1(W∞). In other words, we expect to have p∞ = (Id − νG)−1(W∞)χ�t for 
some region �t . The question now is to characterize �t .

We recall that there is a third component here, namely nk . Manipulating the equation for nk and then using the 
equation that Wk satisfies yields,

∂tnk − Dnk · DWk = nk(�Wk + G(pk)) = nk

ν
(Wk − pk + νG(pk)). (1.5)

The region �t is where the pk converge to the positive value (Id − νG)−1(W∞), so by definition we know that the 
nk converge to 1 there. When the pk converge to 0 (in other words, on �c

t ) we expect the nk to converge to zero if 
initially this is the case (see the discussion in the outline below). Notice that in both situations, the right-hand side of 
the previous equation is zero. Thus we expect n∞ to equal χ�t and solve,

∂tn∞ − Dn∞ · DW∞ = 0, (1.6)
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