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Abstract

We prove the existence of a forward discretely self-similar solutions to the Navier–Stokes equations in R3 × (0, +∞) for a 
discretely self-similar initial velocity belonging to L2

loc
(R3).
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1. Introduction

In this paper we study the existence of forward discretely self-similar (DSS) solutions to the Navier–Stokes equa-
tions in Q =R

3 × (0, +∞)

∇ · u = 0, (1.1)

∂tu + (u · ∇)u − �u = −∇π, (1.2)

with the initial condition

u = u0 on R
3 × {0}. (1.3)

Here u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) denotes the velocity of the fluid, and u0(x) = (u0,1(x), u0,2(x), u0,3(x)), 
while π stands for the pressure. In case u0 ∈ L2(R3) with ∇ · u0 = 0 in the sense of distributions the global in time 
existence of weak solutions to (1.1)–(1.3), which satisfy the global energy inequality for almost all t ∈ (0, +∞)
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has been proved by Leray [9]. On the other hand, the important questions of regularity and uniqueness of solutions 
to (1.1)–(1.3) are still open. The first significant results in this direction have been established by Scheffer [10] and 
later by Caffarelli, Kohn, Nirenberg [2] for solutions (u, π) that also satisfy the following local energy inequality for 
almost all t ∈ (0, +∞) and for all nonnegative φ ∈ C∞

c (Q)
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On the other hand, the space L2(R3) excludes homogeneous spaces of degree −1 belonging to the scaling invariant 
class. In fact we observe that uλ(x, t) = λu(λx, λ2t) solves the Navier–Stokes equations with initial velocity u0,λ(x) =
λu0(λx), for any λ > 0. This suggests to study of the Navier–Stokes system for initial velocities in a homogeneous 
space X of degree −1, which means that ‖v‖X = ‖vλ‖X for all v ∈ X. Koch and Tataru proved in [7] that X =
BMO−1 is the largest possible space with scaling invariant norm which guarantees well-posedness under smallness 
condition. On the contrary, for self-similar (SS) initial data fulfilling u0,λ = u for all λ > 0 a natural space seems to be 
X = L3,∞(R3). This space is embedded into the space L2

uloc(R
3), which contains uniformly local square integrable 

functions. Obviously, possible solutions to the Navier–Stokes equations with u0 ∈ L2
uloc(R

3) do not satisfy the global 
energy equality, rather the local energy inequality in the sense of Caffarelli–Kohn–Nirenberg. Such solutions are called 
local Leray solutions. The existence of global in time local Leray solutions has been proved by Lemariè-Rieusset 
in [8] (see also in [6] for more details). This concept has been used by Bradshaw and Tsai [1] for the construction of 
a discretely self-similar (λ-DSS, λ > 1) local Leray solution for a λ-DSS initial velocity u0 ∈ L3,∞(R3). This result 
generalizes the previous results of Jia and Šverák [5] concerning the existence of SS local Leray solution, and the 
result by Tsai in [11], which proves the existence of a λ-DSS Leray solution for λ near 1. However, for the λ-DSS 
initial data it would be more natural to assume u0 ∈ L2

loc(R
3) instead L3,∞(R3). In general, such initial value does not 

belong to L2
uloc(R

3) and therefore it does not belong to the Morrey class M2,1, rather to the weighted space L2
k(R

3)

of all v ∈ L2
loc(R

3) such that v
(1+|x|k) ∈ L2(R3) for all 1

2 < k < +∞.
Since the authors in [1] work on the existence of periodic solutions to the time dependent Leray equation a certain 

spatial decay is necessary which can be ensured for initial data in L3,∞(R3). On the other hand, applying the local L2

theory it would be more natural to assume u0 ∈ L2(Bλ \ B1) only. As explained in [1] their method even breaks down 
for initial data in the Morrey class M2,1(R3), which is a much smaller subspace of L2

loc(R
3). By using an entirely 

different method we are able to construct a global weak solutions for such DSS initial data.
In the present paper we introduce a new notion of a local Leray solution satisfying a local energy inequality with 

projected pressure. To the end, we provide the notations of function spaces which will be used in the sequel. By 
Ls(G), 1 ≤ s ≤ ∞, we denote the usual Lebesgue spaces. The usual Sobolev spaces are denoted by Wk, s(G) and 
W

k, s
0 (G), 1 ≤ s ≤ +∞, k ∈ N. The dual of Wk, s

0 (G) will be denoted by W−k, s′
(G), where s′ = s

s−1 , 1 < s < +∞. 
For a general space of vector fields X the subspace of solenoidal fields will be denoted by Xσ . In particular, the space 
of solenoidal smooth fields with compact support is denoted by C∞

c,σ (R3). In addition we define the energy space

V 2(G × (0, T )) = L∞(0, T ;L2(G)) ∩ L2(0, T ;W 1, 2(G)), 0 < T ≤ +∞.

We now recall the definition of the local pressure projection E∗
G : W−1, s(G) → W−1, s(G) for a given bounded 

C2-domain G ⊂ R
3, introduced in [13] based on the unique solvability of the steady Stokes system (cf. [4]). More 

precisely, for any F ∈ W−1, s(G) there exists a unique pair (v, p) ∈ W
1, s
0,σ (G) ×Ls

0(G) which solves weakly the steady 
Stokes system

{∇ · v = 0 in G, −�v + ∇p = F in G,

v = 0 on ∂G.
(1.6)
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