On the asymptotic growth of positive solutions to a nonlocal elliptic blow-up system involving strong competition ${ }^{\text {* }}$

Susanna Terracini *, Stefano Vita
Dipartimento di Matematica "Giuseppe Peano", Università di Torino, Via Carlo Alberto, 10, 10123 Torino, Italy
Received 23 June 2016; received in revised form 10 July 2017; accepted 30 August 2017

Abstract

For a competition-diffusion system involving the fractional Laplacian of the form $$
-(-\Delta)^{s} u=u v^{2}, \quad-(-\Delta)^{s} v=v u^{2}, \quad u, v>0 \text { in } \mathbb{R}^{N},
$$ with $s \in(0,1)$, we prove that the maximal asymptotic growth rate for its entire solutions is $2 s$. Moreover, since we are able to construct symmetric solutions to the problem, when $N=2$ with prescribed growth arbitrarily close to the critical one, we can conclude that the asymptotic bound found is optimal. Finally, we prove existence of genuinely higher dimensional solutions, when $N \geq 3$. Such problems arise, for example, as blow-ups of fractional reaction-diffusion systems when the interspecific competition rate tends to infinity.

© 2017 Published by Elsevier Masson SAS.

MSC: primary 35 J 65 ; secondary $35 \mathrm{~B} 40,35 \mathrm{~B} 44,35 \mathrm{R} 11,81 \mathrm{Q} 05,82 \mathrm{~B} 10$
Keywords: Fractional Laplacian; Spatial segregation; Strongly competing systems; Entire solutions

1. Introduction and main results

This paper deals with the existence and classification of positive entire solutions to polynomial systems involving the (possibly) s-fractional Laplacian of the following form:

$$
-(-\Delta)^{s} u=u v^{2}, \quad-(-\Delta)^{s} v=v u^{2}, \quad u, v>0 \text { in } \mathbb{R}^{N} .
$$

Such systems arise, for example, as blow-ups of fractional reaction-diffusion systems when the interspecific competition rate tends to infinity. In this framework, the existence and classification of entire solutions plays a key role in the

[^0]asymptotic analysis (see, for instance, $[15,17]$). The case of standard diffusion $(s=1)$ has been intensively treated in the recent literature, also in connection with a De Giorgi-like conjecture about monotone solutions being one dimensional. In particular, a complete classification of solutions having linear growth (the lowest possible growth rate) has been given in $[1,2,7-9,16,20]$. On the other hand, when $s=1$, positive solutions having arbitrarily large polynomial growth were discovered in [2] and with exponential growth in [14].

Competition-diffusion nonlinear systems with k-components involving the fractional Laplacian have been the object of a recent literature, starting with $[18,19]$, where the authors provided asymptotic estimates for solutions to systems of the form

$$
\left\{\begin{array}{l}
(-\Delta)^{s} u_{i}=f_{i, \beta}\left(u_{i}\right)-\beta u_{i} \sum_{j \neq i} a_{i j} u_{j}^{2}, \quad i=1, \ldots, k \tag{1.1}\\
u_{i} \in H^{s}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

where $N \geq 2, a_{i j}=a_{j i}>0$, when $\beta>0$ (the competition parameter) goes to $+\infty$. Moreover we consider $f_{i, \beta}$ as continuous functions which are uniformly bounded on bounded sets with respect to β (see [18,19] for details). The fractional Laplacian is defined for every $s \in(0,1)$ as

$$
(-\Delta)^{s} u(x)=c(N, s) \operatorname{PV} \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} \mathrm{~d} y .
$$

In order to state our results, we adopt the approach of Caffarelli-Silvestre [5], and we see the fractional Laplacian as a Dirichlet-to-Neumann operator; that is, we consider the extension problem for (1.1). In other words, we study an auxiliary problem in the upper half space in one more dimension ${ }^{1}$; that is, letting $a:=1-2 s$, for any $i=1, \ldots, k$ the localized version of (1.1),

$$
\begin{cases}L_{a} u_{i}=0, & \text { in } B_{1}^{+} \subset \mathbb{R}_{+}^{N+1}, \tag{1.2}\\ \partial_{y}^{a} u_{i}=f_{i, \beta}\left(u_{i}\right)-\beta u_{i} \sum_{j \neq i} a_{i j} u_{j}^{2}, & \text { in } \partial^{0} B_{1}^{+} \subset \partial \mathbb{R}_{+}^{N+1}=\mathbb{R}^{N} \times\{0\},\end{cases}
$$

where the degenerate/singular elliptic operator L_{a} is defined as

$$
-L_{a} u:=\operatorname{div}\left(y^{a} \nabla u\right),
$$

and the linear operator ∂_{y}^{a} is defined as

$$
-\partial_{y}^{a} u:=\lim _{y \rightarrow 0^{+}} y^{a} \frac{\partial u}{\partial y} .
$$

The new problem (1.2) is equivalent to the original one when we deal with solutions in the energy space associated with the two operators. In fact a solution U to the extension problem is the extension of the correspondent solution u of the original nonlocal problem in the sense that $U(x, 0)=u(x)$. Let us remark that if $s=\frac{1}{2}$, then $a=0$ and hence $L_{0}=-\Delta$ and the boundary operator $-\partial_{y}^{0}$ becomes the usual normal derivative ∂_{y}. Moreover we remark that the extension problem has a variational nature in some weighted Sobolev spaces related to the Muckenhoupt A_{2}-weights (see for instance [10]). Hence, given $\Omega \subset \mathbb{R}_{+}^{N+1}$, we can introduce the Hilbert spaces

$$
H^{1 ; a}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R}: \int_{\Omega} y^{a}\left(|u|^{2}+|\nabla u|^{2}\right)<+\infty\right\},
$$

and

$$
H_{l o c}^{1 ; a}\left(\overline{\mathbb{R}_{+}^{N+1}}\right):=\left\{u: \mathbb{R}_{+}^{N+1} \rightarrow \mathbb{R}: \forall r>0,\left.u\right|_{B_{r}^{+}} \in H^{1 ; a}\left(B_{r}^{+}\right)\right\},
$$

[^1]
https://daneshyari.com/en/article/8898137

Download Persian Version:

https://daneshyari.com/article/8898137

Daneshyari.com

[^0]: * Work partially supported by the ERC Advanced Grant 2013 n. 339958 Complex Patterns for Strongly Interacting Dynamical Systems COMPAT and by the PRIN-2012-74FYK7 Grant Variational and perturbative aspects of nonlinear differential problems. The authors wish to thank Alessandro Zilio for many fruitful conversations.
 * Corresponding author.

 E-mail addresses: susanna.terracini @unito.it (S. Terracini), stefano.vita@ unito.it (S. Vita).

[^1]: ${ }^{1}$ Throughout this paper we assume the following notations: $z=(x, y)$ denotes a point in \mathbb{R}_{+}^{N+1}, with $x \in \partial \mathbb{R}_{+}^{N+1}:=\mathbb{R}^{N}$ and $y \in \mathbb{R}_{+}$. Moreover, $B_{r}^{+}\left(z_{0}\right):=B_{r}\left(z_{0}\right) \cap \mathbb{R}_{+}^{N+1}$ is the half ball, and its boundary is divided in the hemisphere $\partial^{+} B_{r}^{+}\left(z_{0}\right):=\partial B_{r}^{+}\left(z_{0}\right) \cap \mathbb{R}_{+}^{N+1}$ and in the flat part $\partial^{0} B_{r}^{+}\left(z_{0}\right):=\partial B_{r}^{+}\left(z_{0}\right) \backslash \partial^{+} B_{r}^{+}\left(z_{0}\right)$. When the center of balls and spheres is omitted, then $z_{0}=0$.

