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Abstract

We address the structural stability of 3-D axisymmetric subsonic flows with nonzero swirl for the steady compressible Euler–
Poisson system in a cylinder supplemented with non-small boundary data. A special Helmholtz decomposition of the velocity field 
is introduced for 3-D axisymmetric flow with a nonzero swirl (= angular momentum density) component. With the newly intro-
duced decomposition, a quasilinear elliptic system of second order is derived from the elliptic modes in Euler–Poisson system for 
subsonic flows. Due to the nonzero swirl, the main difficulties lie in the solvability of a singular elliptic equation which concerns 
the angular component of the vorticity in its cylindrical representation, and in analysis of streamlines near the axis r = 0.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

The steady Euler–Poisson system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div (ρu)= 0,

div (ρu ⊗ u + pIn)= ρ∇�,
div (ρEu + pu)= ρu · ∇�,
�x�= ρ − b(x),

(1.1)
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is a hydrodynamical model of semiconductor devices or plasmas, describing local behaviors of the electron density 
ρ, the macroscopic particle velocity u, and the total energy E = |u|2/2 + e, where e is the internal energy. The first 
equation, which is also called as the continuity equation, expresses the conservation of electrons, the second equations 
express the conservation of momentum, where ρ∇� is the Coulomb force of electron particles. The third equation 
expresses the conservation of energy, and the last Poisson equation expresses the local change of the electric potential 
� due to the volumetric charge density. The function b(x) > 0 is the prescribed density of fixed, positively charged 
background ions. Physically, by solving the Euler–Poisson equations in predetermined macroscopic device region 
with the relevant boundary conditions, we get the electric distribution or electric current in any proper cross sections.

To close the system (1.1), we introduce the equation of state

p = p(ρ, e)= (γ − 1)ρe, (1.2)

where γ > 1 is called the adiabatic constant. In terms of the entropy S, one also has

p(ρ,S)=Aexp

(
S

cv

)
ργ , (1.3)

where A and cv are positive constants. For more details about the physical background of the semiconductor device 
or models, one may refer to [25–27].

Define Bernoulli’s function B by

B = |u|2
2

+ e+ p

ρ
= |u|2

2
+ Aγ

γ − 1
exp

(
S

cv

)
ργ−1. (1.4)

Then, the system (1.1) can be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div (ρu)= 0,

div (ρu ⊗ u + pIn)= ρ∇�,
div (ρuB)= ρu · ∇�,
�x�= ρ − b(x).

(1.5)

The system (1.5) is a hyperbolic–elliptic coupled system, and behaves quite differently in subsonic states (|u| <√
∂ρp(ρ,S)) and supersonic states (|u| >√

∂ρp(ρ,S)), respectively. The goal of this work is to prove the structural 
stability of three dimensional axially symmetric subsonic flows with nonzero swirl (= nonzero angular momentum) 
to the system (1.5) in a circular cylinder of finite length without assumptions of small momentum or small flow speed. 
The existence and the uniqueness of subsonic flows to Euler–Poisson system were proved in [1,3–6,10,11,26,29,31]. 
In [10,11], the unique existence of subsonic flows for Euler–Poisson system is proved for small data. Subsonic flows 
with small current flux were studied in [1,3,26,31]. The structural stability of subsonic flows for multidimensional 
potential flow and two dimensional flow with nonzero vorticity was proved in [4–6], where no smallness of data was 
assumed. In [29], the unique existence of three dimensional subsonic flows with nonzero vorticity was proved. It 
used the Bernoulli’s law to provide a new formulation of Euler–Poisson equations by reducing the dimension of the 
velocity, this idea is originally from [28]. Although the method in [29] works for the 3-D non-isentropic Euler–Poisson 
system, there are some smallness requirements on the background solutions.

The new feature of this work is that we construct three dimensional subsonic flows with nonzero vorticity, and 
that no smallness of data is required. In [4], it is found that a special structure of potential flow model of Euler–
Poisson system yields the structural stability of multidimensional subsonic solutions without assumption of smallness 
of data. This result is extended to the case of two dimensional flow with nonzero vorticity through a two dimensional 
Helmholtz decomposition u = ∇ϕ + ∇⊥ψ in [5]. In this paper, we introduce a Helmholtz decomposition for three 
dimensional subsonic flows in the form of

u = ∇ϕ + curlV with V = her +ψeθ ,

where ϕ, h, ψ are functions of (x, r) for r =
√
x2

2 + x2
3 . With using this decomposition, we investigate axisymmetric 

subsonic flows with nonzero vorticity. In particular, the function ψ concerns the swirl (= angular momentum den-
sity). There are many other studies of axially symmetric smooth subsonic solutions to the steady compressible Euler 
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