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Abstract

In this work, we provide stability estimates for the continuity equation with Sobolev vector fields. The results are inferred 
from contraction estimates for certain logarithmic Kantorovich–Rubinstein distances. As a by-product, we obtain a new proof of 
uniqueness in the DiPerna–Lions setting. The novelty in the proof lies in the fact that it is not based on the theory of renormalized 
solutions.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

When u : [0, T ] × Rd → Rd , f : [0, T ] × Rd → R and ρ̄ : Rd → R are smooth functions, the solution of the 
Cauchy problem for the continuity equation{

∂tρ + ∇ · (uρ) = f,

ρ(0, · ) = ρ̄
(1)

is found by the method of characteristics: If we denote by φ : [0, T ] × Rd → Rd the flow of the vector field u, i.e.,{
∂tφ(t, x) = u(t,φ(t, x)),

φ(0, x) = x,
(2)

for any (t, x) ∈ [0, T ] × Rd , then the solution to (1) is given by the formula

ρ(t,φ(t, x))det∇φ(t, x) = ρ̄(x) +
t∫

0

f (s,φ(s, x))det∇φ(s, x) ds. (3)

In the non-smooth setting, solutions have to be defined in the sense of distributions. A complete theory of distributional 
solutions, including existence, uniqueness and stability properties, is provided in the seminal works of DiPerna and 
Lions [13] and Ambrosio [2].
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The approach of DiPerna, Lions and Ambrosio relies on the theory of renormalized solutions. Roughly speaking, 
renormalized solutions are distributional solutions to which the chain rule applies in the sense that, for every suitable 
β ∈ C1(R), β(ρ) solves the continuity equation with source β ′(ρ)f + (∇ ·u)(β(ρ) −ρβ ′(ρ)) and initial datum β(ρ̄). 
Whether distributional solutions are renormalized solutions depends on the regularity of u. It has been proved in the 
original paper by DiPerna and Lions [13] that this is true under the condition that u ∈ L1(W 1,1) and ∇ · u ∈ L1(L∞). 
DiPerna and Lions furthermore show that the latter can not be relaxed, in the sense that there are (stationary) vector 
fields in W 1,p for any p < ∞ whose divergence is unbounded and that do not possess this renormalization property. 
Likewise, the authors construct solutions to the continuity equation with u ∈ Ws,1 for any s < 1 (and ∇ · u = 0) that 
are not renormalized. In [2], Ambrosio extends DiPerna’s and Lions’s results to vector fields u ∈ L1(BV ). A coun-
terexample in the non-BV setting is provided by Depauw [9].

The merit of renormalization theory relies on a simple proof of uniqueness and stability. For instance, if η denotes 
the difference of two solutions to the Cauchy problem (1), the choice β(z) = z2 yields

∂tη
2 + ∇ ·

(
uη2

)
= −(∇ · u)η2,

and thus, integration in space and a Gronwall argument shows that

‖η‖L∞(L2) ≤ ‖η̄‖L2 exp
1
2
(‖∇ · u‖L1(L∞)

)
.

Thus, if the initial datum η̄ is zero, then η vanishes identically. For a recent review on the well-posedness theories for 
the continuity equation (1) and the related ordinary differential equation (2), we refer the reader to the lecture notes 
[3].

Renormalization theory is also powerful as it applies to a fairly broad class of transport or kinetic equations, e.g., 
[10,12,11]. What the theory does not provide are stability estimates and bounds on the mixing or unmixing efficiencies 
in terms of the regularity of the advecting vector field. Such estimates, however, attracted much attention recently. For 
instance, in [18,23,16], the continuity equation is considered as model for mixing of tracer particles by a viscous fluid 
flow. An important question in engineering applications is how well tracers can be mixed under a constraint on the 
advecting velocity field. Typically, one is interested in optimal mixing rates in terms of the kinetic energy ‖u‖L2 or, 
more importantly, the viscous dissipation ‖∇u‖L2 . The works [23,16] provide lower bounds on the rate of exponential 
decay of the H−1 norm by ‖∇u‖L1(Lp). Optimality of these bounds is proved in [1,27].

The goal of the present work is to establish stability estimates for continuity equations with Sobolev vector fields 
that allow for variations of vector field, source, and initial datum. We demonstrate the strength of these estimates 
by providing a new proof of uniqueness of distributional solutions. Opposed to the theory of DiPerna, Lions, and 
Ambrosio, our approach does not rely on renormalized solutions. Instead, we obtain uniqueness from a contraction 
estimate under suitable integrability assumptions on the solutions.

Our approach is motivated by a related work by Crippa and De Lellis for the ordinary differential equation (2). In 
[7], the authors derive simple stability estimates for suitably generalized flows, so-called regular Lagrangian flows, 
in the case of Sobolev vector fields u. These estimates allow for a direct proof of well-posedness. Prior to the work 
of Crippa and De Lellis, uniqueness and stability were obtained quite indirectly and exploited the connection to the 
continuity equation (1) and the transport equation{

∂tρ + u · ∇ρ = f,

ρ(0, · ) = ρ̄

via the method of characteristics, cf. [13,2]. Crippa’s and De Lellis’s approach has been partially extended to the BV

setting later by Jabin [17] and Hauray and Le Bris [15].
Focusing on the case p > 1, Crippa and De Lellis prove that any two solutions φ and φ̃ of (2) satisfy estimates of 

the type

sup
t∈(0,T )

∫
log

(
|φ(t, x) − φ̃(t, x)|

δ
+ 1

)
dx � ‖∇u‖L1(Lp), (4)

uniformly in δ > 0. That means, trajectories can only vary in a tube with diameter of order δ. As δ → 0, this tube 
shrinks to a single curve, which proves uniqueness. Crippa’s and De Lellis’s logarithmic estimates generalize the 
well-known estimate valid for flows of Lipschitz vector fields
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