A characterization result for the existence of a two-phase material minimizing the first eigenvalue

Juan Casado-Díaz
Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain
Received 31 October 2015; received in revised form 9 July 2016; accepted 19 September 2016

Abstract

Given two isotropic homogeneous materials represented by two constants $0<\alpha<\beta$ in a smooth bounded open set $\Omega \subset \mathbb{R}^{N}$, and a positive number $\kappa<|\Omega|$, we consider here the problem consisting in finding a mixture of these materials $\alpha \chi_{\omega}+\beta\left(1-\chi_{\omega}\right)$, $\omega \subset \mathbb{R}^{N}$ measurable, with $|\omega| \leq \kappa$, such that the first eigenvalue of the operator $u \in H_{0}^{1}(\Omega) \rightarrow-\operatorname{div}\left(\left(\alpha \chi_{\omega}+\beta\left(1-\chi_{\omega}\right)\right) \nabla u\right)$ reaches the minimum value. In a recent paper, [6], we have proved that this problem has not solution in general. On the other hand, it was proved in [1] that it has solution if Ω is a ball. Here, we show the following reciprocate result: If $\Omega \subset \mathbb{R}^{N}$ is smooth, simply connected and has connected boundary, then the problem has a solution if and only if Ω is a ball.

© 2016 Published by Elsevier Masson SAS.

MSC: 49J20
Keywords: Two-phase material; Control in the coefficients; Eigenvalue; Non-existence

1. Introduction

We consider a bounded open set $\Omega \subset \mathbb{R}^{N}, N \geq 2$, and two constants $0<\alpha<\beta$, representing two homogeneous isotropic materials (thermic, electric, elastic,...). A classical problem in optimal design consists in mixing these materials in order to minimize a certain functional. Such as it is proved in [17] and [18], this type of problems has not solution in general and then it is usual to deal with relaxed formulations which can be obtained by using the homogenization theory (see e.g. [2,7,19,22,23]).

Between the most studied problems of this type (see e.g. [2,6,14,15,19]) we emphasize the following one

$$
\left\{\begin{array}{l}
\min \int_{\Omega}\left(\alpha \chi_{\omega}+\beta \chi_{\Omega \backslash \omega}\right)|\nabla u|^{2} d x \tag{1.1}\\
-\operatorname{div}\left(\left(\alpha \chi_{\omega}+\beta \chi_{\Omega \backslash \omega)}\right) \nabla u\right)=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad|\omega|<\kappa,
\end{array}\right.
$$

[^0]with $f \in H^{-1}(\Omega)$ and $\kappa \in(0,|\Omega|)$ (for $\kappa \geq|\Omega|$, the solution is the trivial one $\omega=\Omega$). A special attention has been paid for $f=1$ and $N=2$, where it represents the optimal distribution of two materials in the cross section a beam in order to minimize the torsion. In this case, it has been proved in [19] that if Ω is simply connected and smooth and there exists a smooth solution ω, then Ω is a ball. This result has been improved in [6] by showing that the result holds true without any smoothness assumptions on ω (the case $N>2$ is also considered). The proof is based on certain regularity results for the solution of the relaxed formulation of (1.1) also obtained in [6]. A related problem consisting in replacing the minimum in (1.1) by a maximum has been considered in [5].

It has also been observed in [6] that problem (1.1) is strongly related to another classical optimization design problem for a two-phase material. It consists in finding a measurable set $\omega \subset \Omega$ with $|\omega| \leq \kappa(0<\kappa<|\Omega|$ as above $)$ such that the first eigenvalue of the operator

$$
\begin{equation*}
u \in H_{0}^{1}(\Omega) \mapsto-\operatorname{div}\left(\left(\alpha \chi_{\omega}+\beta \chi_{\Omega \backslash \omega}\right) \nabla u\right) \in H^{-1}(\Omega) \tag{1.2}
\end{equation*}
$$

becomes minimal. Namely, it is proved that the relaxed formulation of this problem is equivalent to solve the relaxed formulation of (1.1) for every $f \in L^{2}(\Omega)$ with $\|f\|_{L^{2}(\Omega)}=1$ and then to minimize in f. Thus, the regularity results proved in [6] for (1.1) also hold for the minimization of the eigenvalue. As an application, it has been shown that the problem has not solution if Ω is a rectangle or an ellipsis. On the other hand, it was proved in [1] that the eigenvalue problem has a solution in the particular case where Ω is a ball and then the optimal set ω has a radial structure. Some discussions about the exact structure of ω when Ω is a ball can be found in [8,9,16] and [20].

The purpose of the present paper is to show that, similarly to the result stated above for problem (1.1) with $f=1$, if Ω is a smooth simply connected open set with connected boundary such that the minimization of the first eigenvalue of the operator (1.2) has a solution, then Ω is a ball. As for problem (1.1), the proof uses the results obtained in [6] but the reasoning is more involved. For problem (1.1) with $f=1$ one has that the optimal solutions (ω, u) are such that there exist an analytic function w and a positive number μ, satisfying

$$
\begin{equation*}
\left(\alpha \chi_{\omega}+\beta \chi_{\Omega \backslash \omega}\right) \nabla u=\nabla w, \quad\{|\nabla w|>\mu\} \subset \omega \subset\{|\nabla w| \geq \mu\} . \tag{1.3}
\end{equation*}
$$

Moreover, the Laplacian of $|\nabla w|^{2}$ in Ω is nonnegative. For the eigenvalue problem, statement (1.3) still holds true but now w is non-analytic and the Laplacian of $|\nabla w|^{2}$ can change its sign in Ω. Thus, many of the ideas used in [6] (and [19]) cannot be used here.

2. The characterization result

For a smooth bounded open set $\Omega \subset \mathbb{R}^{N}, N \geq 2$, and three constants $0<\alpha<\beta, 0<\kappa<|\Omega|$, we consider the problem consisting in finding a measurable subset ω of Ω with $|\omega| \leq \kappa$, such that the first eigenvalue of the problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(\alpha \chi_{\omega}+\beta \chi_{\Omega \backslash \omega}\right) \nabla u\right)=\lambda u \text { in } \Omega \tag{2.1}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

reaches its minimum value. This can also been formulated as

$$
\left\{\begin{array}{l}
\min \int_{\Omega}\left(\alpha \chi_{\omega}+\beta \chi_{\Omega \backslash \omega}\right)|\nabla u|^{2} d x \tag{2.2}\\
u \in H_{0}^{1}(\Omega), \quad \int_{\Omega}|u|^{2} d x=1 \\
\omega \subset \Omega \text { measurable, } \quad|\omega| \leq \kappa
\end{array}\right.
$$

We remark that if we do not assume the volume restriction $|\omega| \leq \kappa$, then the solution is the trivial one given by $\omega=\Omega$. However in the applications, the material α can be more expensive than β and thus, we can only dispose of a certain quantity κ of material α. The question then is how to distribute it in an optimal way.

As an application of (2.2) we can consider the following problem for the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} u-\operatorname{div}\left(\left(\alpha \chi_{\omega}+\beta \chi_{\Omega \backslash \omega}\right) \nabla u\right)=0 \text { in } \Omega \times(0, \infty) \\
u=0 \text { on } \partial \Omega \times(0, \infty) \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

https://daneshyari.com/en/article/8898175

Download Persian Version:

https://daneshyari.com/article/8898175

Daneshyari.com

[^0]: E-mail address: jcasadod@us.es.
 http://dx.doi.org/10.1016/j.anihpc.2016.09.006
 0294-1449/© 2016 Published by Elsevier Masson SAS.

