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Abstract

We consider a class of nonlinear Klein–Gordon equations utt = uxx −u +f (u) and obtain a family of small amplitude periodic 
solutions, where the temporal and spatial period have different scales. The proof is based on a combination of Lyapunov–Schmidt 
reduction, averaging and Nash–Moser iteration.
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1. Introduction

The nonlinear Klein–Gordon equation

utt = uxx − u + f (u) , x ∈ R, (1.1)

is an important model in particle physics, which models the field equation for spineless particles. Classical examples 
include Sine-Gordon equation and φ4-model. The main result of this paper is to construct a family of small amplitude 
periodic (both in time and space) solutions of (1.1), where the temporal and spatial period have different scales. More-
over, we can approximate such periodic solutions by a simple periodic orbit for a planar system up to exponentially 
small errors. We will postpone the precise statement until the end of Section 2 after we introduce some mathematical 
notations. Throughout this paper, we will assume the nonlinear term f to be analytic and odd in u. The analyticity is 
crucial for us to prove the exponentially small error. The oddness is assumed just for convenience. We will comment 
on how to deal with general f containing quadratic terms later in this section.

The motivation of this paper originates from the sine-Gordon equation (f (u) = u − sinu)

utt = uxx − sinu, (1.2)

which has a family of time periodic solutions (breathers)
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u(x, t) = 4 arctan

√
1 − ω2 sinωt

ω cosh
√

1 − ω2x
. (1.3)

Clearly, the above formula is only defined for |ω| < 1. Since (1.1) can be viewed as a perturbation of (1.2) for small 
amplitude solutions, it is natural to ask if (1.1) admits any time periodic solution parameterized by ω. The author 
studied the problem for ω = √

1 − ε2 in [19], where he obtained small amplitude (of order ε) breather solutions with 
O(e− c

ε ) tails as |x| → ∞, i.e., the solution is 2π
ω

periodic in time and almost localized in space with exponentially 
small errors. In this manuscript, we continue our study for ω = √

1 + ε2. It turns out the solutions we obtain here have 
completely different behavior in spatial variable, namely, the solution is also periodic in x.

Since the temporal period is explicitly known, we use the spatial dynamics method (interchanging x and t ) to 
rewrite (1.1) as a nonlinear wave equation with periodic boundary condition

utt = uxx + u − f (u) , u(x, t) = u(x + 2π

ω
, t), (1.4)

where ω = √
1 + ε2. By normalizing the spatial period (temporal period for (1.1)) to be 2π , i.e. rescale x to ωx, we 

further transform (1.4) to

utt = ω2uxx + u − f (u) , u(x, t) = u(x + 2π, t). (1.5)

Since the nonlinearity f is odd in u, it suffices to restrict u to be odd in x. Consequently, the linear operator ω2∂xx + 1
has characteristic frequencies ±εi and ±√

ω2k2 − 1i for k ≥ 2 with multiplicity 1.
The strategy for finding periodic solutions of (1.1) ((1.5) under spatial dynamics formulation) is a combination 

of singular perturbation theory, averaging, Lyapunov–Schmidt reduction and Nash–Moser iteration. First of all, we 
observe that the characteristic frequencies of the linear operator ω2∂xx + 1 have two scales, namely, one pair of 
O(ε)-eigenvalues and infinitely many pairs of O(1)-eigenvalues. To obtain uniform knowledge in ε, we rescale time 
in (1.5) to blow up small eigenvalues from O(ε) to O(1), which makes the O(1)-eigenvalues become O( 1

ε
). With 

appropriate spatial rescaling, we obtain a singularly perturbed system (2.3) and (2.4). The singular limit of such system 
can be rigorously justified as a second order ordinary differential equation (2.11) whose phase plane contains a lot of 
periodic orbits. Secondly, we perform a sequence of partial normal form transformations to obtain a system whose 
solutions are exponentially close to the limit equation. Finally, we follow the Lyapunov–Schmidt type argument in 
[28] and the Nash–Moser iteration in [6] to find our periodic solutions near those unperturbed ones.

The problem of finding periodic solutions to Hamiltonian PDEs has been extensively studied since the 1960s, 
see for example [5,6,16,17,24–27] and references therein. The first breakthrough on this problem was due to Rabi-
nowitz [24]. He rephrased the problem as a variational problem and proved the existence of periodic solutions under 
the monotonicity assumption on the nonlinearity whenever the time period was a rational multiple of the length of the 
spatial interval. Subsequently, many authors, such as Brézis, Coron, Nirenberg etc., have used and developed Rabi-
nowitz’s variational methods to obtain related results, see [2,8,10]. In these papers, the time period T is required to be 
a rational multiple of π . The case in which T is some irrational multiple of π has been investigated by Fečkan [13] and 
McKenna [20]. At the end of the 1980s, a different approach which used the Kolmogorov–Arnold–Moser (KAM) the-
ory was developed from the viewpoint of infinite dimensional dynamical systems by Kuksin [18] and Wayne [29]. This 
method allows one to obtain solutions whose periods are irrational multiples of the length of the spatial interval, and 
it can also be easily extended to construct quasi-periodic solutions see [23,15,30] and references therein. Unlike the 
variational techniques, the KAM theory only yields solutions of small amplitude. Later, in the original work of Craig–
Wayne [12], the existence of periodic solutions for the one-dimensional conservative nonlinear wave equation was 
also proved by using the Lyapunov–Schmidt method and Newton iterations. Here we point out equation (1.1) is not 
completely resonant. Results on periodic/quasi-periodic solutions for completely resonant nonlinear wave equations 
can be found in [1,4,14]. For exponential stability of periodic solutions, we refer readers to Bambusi–Nekhoroshev 
[9] and Paleari–Bambusi–Cacciatori [22] and references therein.

The methodology employed in this paper is based on a perturbation argument, which is different from the varia-
tional technique and the KAM theory. Even though our solutions still have small amplitudes, which is due to scaling, 
we actually obtain them from some unperturbed periodic orbits which have large amplitudes. The central idea of KAM 
theory is to use successive approximate solutions (obtained by normal form transformations) with better accuracy to 
obtain the exact solution. This method usually requires the analyticity of nonlinearity to assure the convergence of 
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