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Abstract

This is the first part of our comprehensive study on the structure of doubly periodic solutions for the Chern–Simons–Higgs 
equation with a small coupling constant. We first classify the bubbling type of the blow-up point according to the limit equations. 
Assuming that all the blow-up points are away from the vortex points, we prove the non-coexistence of different bubbling types in 
a sequence of bubbling solutions. Secondly, for the CS type bubbling solutions, we obtain an existence result without the condition 
on the blow-up set as in [4]. This seems to be the first general existence result of the multi-bubbling CS type solutions which is 
obtained under nearly necessary conditions. Necessary and sufficient conditions are also discussed for the existence of bubbling 
solutions blowing up at vortex points.
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the last decade, various Chern–Simons theories have been studied for their applications in different physics mod-
els, such as the relativistic Chern–Simons theory of superconductivity [11], Lozano–Marqueés–Moreno–Schaposnik 
model of bosonic sector of N = 2 super-symmetric Chern–Simons–Higgs theory [29], and Gudnason model of N = 2
super-symmetric Yang–Mills–Chern–Simons–Higgs theory [12], just to name a few. Those Chern–Simons systems, 
after a suitable ansatz, can be reduced to systems of elliptic partial differential equations with exponential nonlinear-
ities. Although these nonlinear differential equations pose many analytically challenging problems and attract lots of 
attentions, there are still many problems unsolved. For the recently mathematical developments, we refer the readers 
to [1,2,5–8,13–16,18,22,23,27,28,30,33,32,37] and the references therein.

Among those non-trivial equations, the simplest one is the Abelian Chern–Simons–Higgs model proposed by 
Jackiw–Weinberg [19] and Hong–Kim–Pac [17]. The Chern–Simons–Higgs Lagrangian density is given by

L = κ

4
εμνρFμνAρ + DμφDμφ − 1

κ2
|φ|2(1 − |φ|2)2,
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where Aμ, μ = 0, 1, 2, is the gauge field in R3, Fμν = ∂
∂μ Aν − ∂

∂ν Aμ is the curvature tensor, φ is the Higgs field in R3, 
Dμ = ∂

∂μ − iAμ, i = √−1, is the gauge covariant derivative associated with Aμ, εμνρ is the skew symmetric tensor 
with ε012 = 0 and the constant κ is the coupling constant. When the energy for the pair (φ, A) is saturated, in [19]
and [17], the authors independently derived the following Bogomol’nyi type equations

(D1 + iD2)φ = 0, (1.1)

and

F12 + 2

κ2
|φ|2(1 − |φ|2)2 = 0. (1.2)

Following Jaffe and Taubes [20], we can reduce (1.1) and (1.2) to a single elliptic equation as follows. Let 
p1, · · · , pN be a set of points in R2. We introduce a real valued function u and θ by φ = e

1
2 (u+iθ) and θ =

2 
∑N

j=1 arg(z − pj ), z = x1 + ix2 ∈ C. Then u satisfies

	u + 4

κ2
eu(1 − eu) = 4π

N∑
j=1

δpj
, in R

2, (1.3)

where δp(x) is the Dirac measure at p. The readers can find the details of the derivation of the above equations in [36,
38] and some recent developments of the related subjects in [3,9,24,31,35,36].

Starting with this paper, we will initiate a comprehensive study of the structure of doubly periodic solutions 
for (1.3). So we study the following equation{

	u + 1
ε2 eu(1 − eu) = 4π

∑N
j=1 δpj

, in 

u is doubly periodic on ∂,
(1.4)

where ε = κ
2 > 0 is a small parameter, and  is a flat torus in R2.

Problem (1.4) involves Dirac measures. To eliminate them from the equation, we introduce the Green function 
G(x, p) of −	 in  with singularity at p, subject to the doubly periodic boundary condition. That is, G(x, p) satisfies{−	G(x,p) = δp − 1

|| ,
∫


G(x,p)dx = 0,

G(x,p) is doubly periodic on ∂,

where || is the measure of . Let

u0(x) = −4π

N∑
j=1

G(x,pj ). (1.5)

Using this function u0, (1.4) is reduced to solving the following problem.{
	u + 1

ε2 eu+u0(1 − eu+u0) = 4Nπ
|| , in ,

u is doubly periodic on ∂.
(1.6)

Using the maximum principle, we can find that any solution uε of (1.6) satisfies uε + u0 < 0. On the other hand, 
integrating (1.6) leads to 

∫


euε+u0(1 − euε+u0) = 4Nπε2

|| , which implies either uε → −u0, or uε → −∞ almost 
everywhere in  as ε → 0. In [10], Choe and Kim proved that (1.6) may have a sequence of solution uε, satisfying 
the following conditions: there is a finite set {xε,1, · · · , xε,k}, xε,j ∈ , j = 1, · · · , k, such that as ε → 0,

uε(xε,j ) + ln
1

ε2
→ +∞, ∀ j = 1, · · · , k, (1.7)

and

uε(x) + ln
1

ε2
→ −∞, uniformly on any compact subset of  \ {q1, · · · , qk}, (1.8)
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