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This paper concerns two related problems in the analysis of data matrices whose 
rows and columns are equipped with tree metrics. First is the problem of recovering 
a matrix that has been corrupted by additive noise. Under the assumption that 
the clean matrix exhibits a specific regularity condition, known as the mixed 
Hölder condition, we adapt the well-known Donoho–Johnstone wavelet shrinkage 
methods from classical nonparametric statistics to obtain estimators that are within 
a logarithmic factor of the minimax error rate with respect to mean squared error 
loss.
The second part of this paper develops a theory of Besov spaces on products of tree 
geometries. We show that matrices with small Besov norm can be written as a sum 
of a mixed Hölder matrix and a matrix with small support. Such decompositions are 
known as Calderón–Zygmund decompositions and are of general interest in harmonic 
analysis. The decompositions we establish impose fewer conditions on the function 
with small support than previous decompositions of this type while maintaining 
the same guarantees on the mixed Hölder matrix. As such, they are applicable to a 
greater variety of matrices and should find use in many data organization problems. 
As part of our analysis, we provide characterizations of the underlying Besov spaces 
using wavelets and other multiscale difference operators that are analogous to those 
from the classical Euclidean theory.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with matrix decompositions of the following form: if f(x, y) is a matrix, by 
which we mean a function on the product of two discrete sets X and Y , we seek to write f = g + b, 
where g is a “good” matrix satisfying a certain regularity condition known as the mixed Hölder condition 
that we describe in Section 2, and b is a “bad” matrix that is nevertheless under control in some way. 
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Such decompositions are encountered throughout analysis and its applications, such as in signal and image 
processing [1].

In Sections 1.1–1.6, we briefly introduce the high-level ideas used throughout this paper. In Section 1.7, 
we discuss the contributions of this paper.

1.1. Wavelets and multiresolution analysis

We give a brief summary of some relevant facts from wavelet theory. Of particular concern to us will be 
the notion of a multiresolution analysis of L2(R) [2–4]. One starts with a function φ(x), and considers all 
its dyadic dilates and integer translates, given by

φj,k(x) = 2−j/2φ(2−jx− k) (1)

We define Vj as the linear span of the functions φj,k over all integers k. Under suitable conditions on φ, 
these spaces will be nested; that is, Vj � Vj−1, or in other words, we can write φ(x) as a linear combination 
of the functions φ(2x − k); and their union is all of L2(R). In this case the system of subspaces Vj forms
what is called a “multiresolution analysis” of L2(R), as each subspace captures activity at a certain dyadic 
scale, or resolution.

Wavelet analysis arises by looking at the orthogonal complement of Vj in Vj−1, which we denote by Wj . 
Given a multiresolution analysis as just described, one can construct a function ψ(x) whose integer translates 
span W0, and consequently where the functions ψj,k(x) = 2−j/2ψ(2−jx − k) span Wj . The function φ is 
known as the “father wavelet”, or “scaling function” and the function ψ is known as the “mother wavelet”.

Perhaps the simplest example of such a system is the Haar system. Here, the father wavelet φ is the 
indicator function of the interval [0, 1], and the mother wavelet is the function χ[0,1/2] − χ[1/2,1]. The space 
Vj is the span of indicator functions of dyadic intervals [2−jk, 2−j(k+1)] for all integers k. It is very simple 
to generalize this particular multiresolution analysis to the setting of partition trees on abstract sets [5], as 
we will describe in more detail later.

1.2. The classical Besov spaces

Given a metric space (X, d), a natural way of measuring the variation of a function f defined on X is its 
Lipschitz norm, defined by

sup
x�=y

f(x) − f(y)
d(x, y) . (2)

If f is a differentiable function on R, the Lipschitz norm (2) is equal to ‖f ′‖∞, the supremum of f ’s derivative. 
Expression (2), however, is defined for non-differentiable functions and makes sense in the abstract setting 
of any metric space.

A generalization of the Lipschitz norm is the Hölder norm, which replaces the metric d(x, y) by d(x, y)α
for some parameter α > 0. For functions on R, this space is only non-trivial when 0 < α ≤ 1. The space of 
Hölder functions when α is strictly less than 1 has nicer algebraic properties than the Lipschitz space; in 
particular, the Hölder norm of a function can be characterized by the size of its wavelet coefficients. If we 
take a sufficiently nice wavelet basis {ψj,k} of Rn (where j ∈ Z indexes the dyadic scale 2−j and k ∈ Z the 
location), then the expression

sup
j,k

2j(α+1/2)|〈f, ψj,k〉| (3)
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