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The general Poisson summation formula of harmonic analysis and analytic number 
theory can be regarded as a quadrature formula with remainder. The purpose of 
this investigation is to give estimates for this remainder based on the classical 
modulus of smoothness and on an appropriate metric for describing the distance of 
a function from a Bernstein space. Moreover, to be more flexible when measuring 
the smoothness of a function, we consider Riesz derivatives of fractional order. It 
will be shown that the use of the above metric in connection with fractional order 
derivatives leads to estimates for the remainder, which are best possible with respect 
to the order and the constants.
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1. Introduction

The general Poisson summation formula, involving a function f and its Fourier transform f̂ , as defined 
in (6), states

a
∑
k∈Z

f(ak) =
√

2π
∑
k∈Z

f̂(bk) (a > 0, b > 0, ab = 2π), (1)

holding under various assumptions on f .
If f belongs to the Bernstein space B1

σ (see Section 2 for definitions and notations), then f̂(v) vanishes 
outside (−σ, σ) and (1) takes the particular form (a = h := 2π/σ, b = σ)

∞∫
−∞

f(t) dt = h
∑
k∈Z

f(hk) ,

which can be interpreted as an exact quadrature formula (trapezoidal rule), as has been observed by many 
mathematicians since a long time. Moreover, this quadrature formula can be characterized by the features 
of a Gaussian quadrature formula with respect to Bernstein spaces instead of classical polynomial spaces; 
for details see [1].

When f /∈ B1
σ, then this quadrature formula is no longer exact, but one has to add a remainder term. 

Indeed, the general Poisson formula (1) can be restated as

∞∫
−∞

f(t) dt = h
∑
k∈Z

f(hk) −
√

2π
∑′

k∈Z

f̂(kσ) , (2)

the dash at the summation sign indicating that the term for k = 0 is omitted.
Poisson’s summation formula has many interesting applications. In particular, it is an important tool in 

the study of shift-invariant space; see, e.g., [2, p. 430], [3, Chap. 13, §7] and [4, p. 65]. Conversely, Poisson’s 
summation formula, or its interpretation as trapezoidal rule on R, can be studied as a special case in the 
setting of shift-invariant spaces. However, shift-invariant spaces would not simplify our investigations nor 
would they lead to best possible concrete constants in the error estimates, a major aim of this paper. In 
fact, one essential improvement in regard to known results in this paper, namely best possible constants in 
the estimates for the remainders, is the leitmotiv of Korneichuk’s well-known book [5], dealing with exact 
constants for approximation procedures.

A function space A guaranteeing the validity of (2) and suitable for our purposes is given by

A :=
{
f ∈ L1(R) ∩ Cb(R); f ∈ BV(R) or f̂ ∈ BV(R)

}
,

where BV(R) denotes the set of all functions which are of bounded variation over R. See [6, Section 5.1.5]
and [7]. Other conditions for the validity of Poisson’s summation formula were given in [8, Theorem 2.25, 
Corollaries 2.26 and 2.27]. In this paper it is not necessary to look for very weak conditions since our error 
estimates will need assumptions on f stronger than those specifying A anyway.

Using the space A, we can state (2) more precisely as follows:

Proposition 1.1. Let f ∈ A. Then for h = 2π/σ > 0

∞∫
−∞

f(t) dt = h
∑
k∈Z

f(hk) + Rσ(f), (3)



Download English Version:

https://daneshyari.com/en/article/8898189

Download Persian Version:

https://daneshyari.com/article/8898189

Daneshyari.com

https://daneshyari.com/en/article/8898189
https://daneshyari.com/article/8898189
https://daneshyari.com

