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We consider a collection of n points in Rd measured at m times, which are encoded 
in an n × d ×m data tensor. Our objective is to define a single embedding of the n
points into Euclidean space which summarizes the geometry as described by the data 
tensor. In the case of a fixed data set, diffusion maps and related graph Laplacian 
methods define such an embedding via the eigenfunctions of a diffusion operator 
constructed on the data. Given a sequence of m measurements of n points, we 
introduce the notion of time coupled diffusion maps which have natural geometric 
and probabilistic interpretations. To frame our method in the context of manifold 
learning, we model evolving data as samples from an underlying manifold with a 
time-dependent metric, and we describe a connection of our method to the heat 
equation on such a manifold.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In many machine learning and signal processing tasks, the observable data is high dimensional, but it lies 
on a low-dimensional intrinsic manifold. In recent years, several manifold learning methods have emerged 
which attempt to recover the intrinsic manifold underlying datasets. In particular, graph Laplacian methods 
have become popular due to their practicality and theoretical guarantees [1–8].

Current graph Laplacian methods implicitly assume a static intrinsic manifold, or equivalently, that the 
dynamics underlying the data generation process are stationary. For many applications, this stationary 
assumption is justified, as datasets often consist of a single snapshot of a system, or are recorded over small 
time windows. However, in the case where data is accumulated over longer periods of time, accounting for 
changing dynamics may be advantageous. Furthermore, if a system is particularly noisy, combining a large 
number of snapshots over time may help recover structure hidden in noise. These observations raise the 
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following question: how can graph Laplacian methods be extended to account for changing dynamics while 
maintaining theoretical guarantees?

In this paper, we propose modeling data with changing dynamics by assuming there exists an underlying 
intrinsic manifold with a time-dependent metric. We will describe the proposed method using the diffusion 
maps framework: a popular graph Laplacian framework which is robust to non-uniform sampling [4]. We 
remark that diffusion maps are highly related to other manifold learning methods such as Laplacian eigen-
maps and spectral clustering. In fact, if data is uniformly sampled from the underlying manifold, diffusion 
maps [4] is essentially eigenvalue weighted Laplacian eigenmaps [9].

Although we assume points on the intrinsic manifold are fixed, their geometry, i.e., dependence struc-
ture, is allowed change. We can conceptualize samples from a manifold with a time-dependent metric by 
considering a corresponding point cloud smoothly moving through Rd produced by isometrically embedding 
the manifold over time. The evolution of the metric dictates the movement of points, and vice versa. In 
practice, datasets conforming to this model are commonly encountered, e.g., an RGB video feed consists of 
a collection of n pixels which move through R

3.
In general, we consider data consisting of a collection of n points in Rd measured at m times encoded in an 

n ×d ×m data tensor X. The tensor X can be expressed as a sequence (X1, . . . , Xm) of n ×d matrices whose 
entries correspond across the sequence. Given such as sequence (X1, . . . , Xm), the time coupled diffusion 
map framework introduced in this paper is based on the product operator:

P(m) = PmPm−1 · · ·P2P1,

where each Pi is a diffusion operator constructed from Xi. We will show that this discrete diffusion process, 
which is formally defined in the following section, approximates a continuous diffusion process on an assumed 
underlying manifold with a time-dependent metric. Additionally, we introduce the notion of time coupled 
diffusion maps, named thus because the time evolution of the data has been coupled to the time evolution 
of a diffusion process.

1.1. Related works

In the diffusion geometry literature, several techniques have been developed, which also utilize multi-
ple diffusion kernels for a variety of objectives including: iteratively refining the representation of data, 
facilitating comparison, and combing multiple measurements of a fixed system.

An early example of a multiple kernel method is the denoising algorithm of Szlam, Maggioni, and Coifman 
[10], which iteratively smooths an image via an anisotropic diffusion process. That is, the algorithm switches 
between constructing a diffusion kernel on a given data set (in this case an image), and applying the 
constructed kernel to the data:

Xi → Pi, Xi+1 = PiXi

where the arrow denotes that Pi is constructed based on Xi. More recently, in [11] Welp, Wolf, Hirn, and 
Krishnaswamy introduce an iterative diffusion based construction, which acts to course grain data. From a 
theoretical perspective, both of these methods can be considered in the context of the time coupled diffusion 
framework introduced in this paper.

In [12] Wang, Jiang, Wang, Zhou, and Tu introduce the notion of Cross Diffusion as a metric fusion 
algorithm with applications to image processing. They demonstrate how multiple metrics on a given data 
set can be combined by considering the iterative cross diffusion
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