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Diffusion Maps framework is a kernel based method for manifold learning and data 
analysis that defines diffusion similarities by imposing a Markovian process on the 
given dataset. Analysis by this process uncovers the intrinsic geometric structures 
in the data. Recently, it was suggested to replace the standard kernel by a measure-
based kernel that incorporates information about the density of the data. Thus, the 
manifold assumption is replaced by a more general measure-based assumption.
The measure-based diffusion kernel incorporates two separate independent represen-
tations. The first determines a measure that correlates with a density that represents 
normal behaviors and patterns in the data. The second consists of the analyzed mul-
tidimensional data points.
In this paper, we present a representation framework for data analysis of datasets 
that is based on a closed-form decomposition of the measure-based kernel. The pro-
posed representation preserves pairwise diffusion distances that does not depend on 
the data size while being invariant to scale. For a stationary data, no out-of-sample 
extension is needed for embedding newly arrived data points in the representation 
space. Several aspects of the presented methodology are demonstrated on analyti-
cally generated data.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Kernel methods constitute of a wide class of algorithms for non-parametric data analysis of massive 
high dimensional datasets. Typically, a limited set of underlying factors generates the high dimensional 
observable parameters via non-linear mappings. The non-parametric nature of these methods enables to 
uncover hidden structures in the data. These methods extend the well known Multi-Dimensional Scaling 
(MDS) [6,14] method. They are based on an affinity kernel construction that encapsulates the relations 
(distances, similarities or correlations) among multidimensional data points. Spectral analysis of this kernel 
provides an efficient representation of the data that simplifies its analysis. Methods such as Isomap [29], 
LLE [22], Laplacian eigenmaps [1], Hessian eigenmaps [8] and local tangent space alignment [31,33], extend 
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the MDS paradigm by assuming to satisfy the manifold assumption. Under this assumption, the data is 
assumed to be sampled from a low intrinsic dimensional manifold that captures the dependencies between the 
observable parameters. The corresponding spectral-based embedding performed by these methods preserves 
the geometry of the manifold that incorporates the underlying factors in the data.

The diffusion maps (DM) method [5] is a kernel-based method that defines diffusion similarities for data 
analyzes by imposing a Markovian process over the dataset. It defines a transition probability operator 
based on local affinities between multidimensional data points. By spectral decomposition of this operator, 
the data is embedded into a low dimensional Euclidean space, where Euclidean distances represent the 
diffusion distances in the ambient space. When the data is sampled from a low dimensional manifold, the 
diffusion paths follow the manifold and the diffusion distances capture its geometry.

DM embedding was utilized for a wide variety of data and pattern analysis techniques. For example it was 
used to improve audio quality by suppressing transient interference [28]. It was utilized in [25] for detecting 
and classifying moving vehicles. Additionally, DM was applied to scene classification [12], gene expression 
analysis [24] and source localization [27]. Furthermore, the DM method can be utilized for fusing different 
sources of data [16,13].

DM embeddings in both the original version [5,15] and in the measure-based Gaussian correlation (MGC) 
version [4,3], are obtained by the principal eigenvectors of the corresponding diffusion operator. These 
eigenvectors represent the long-term behavior of the diffusion process that captures its metastable states [11]
as it converges to a unique stationary distribution.

The MGC framework [4,3] enhances the DM method by incorporating information about data distribution 
in addition to the local distances on which DM is based. This distribution is modeled by a probability 
measure, which is assumed to quantify the likelihood of data presence over the geometry of the space. The 
measure and its support in this method replace the manifold assumption. Thus, the diffusion process is 
accelerated in high density areas in the data rather than being depended solely on the manifold geometry. 
As shown in [4], the compactness of the associated integral operator enables to achieve dimensionality 
reduction by utilizing the DM framework.

This MGC construction consists of two independent data points representations. The first represents the 
domain on which the measure is defined or, equivalently, the support of the measure. The second represents 
the domain on which the MGC kernel function and the resulting diffusion process are defined. These measure 
domain and the analyzed domain may, in some cases, be identical, but separate sets can also be considered 
by the MGC-based construction. The latter case utilizes a training dataset, which is used as the measure 
domain to analyze any similar data that is used as the analyzed domain. Furthermore, instead of using the 
collected data as an analyzed domain, it can be designed as a dictionary or as a grid of representative data 
points that capture the essential structure of the MGC-based diffusion.

In general, kernel methods can find geometrical meaning in a given data via the application of spec-
tral decomposition. However, this representation changes as additional data points are added to the given 
dataset. Furthermore, the required computational complexity, which is dictated by spectral decomposition, 
is O(n3) that is not feasible for a very large dataset. For example, a segmentation of a medium size image 
of 512 × 512 pixels requires a kernel matrix of size 218 × 218. The size of such matrix necessitated about 
270 GByte of memory assuming double precision. Spectral decomposition procedure applied to such a ma-
trix is a formidable slow task. Hence, there is a growing need to have more computationally efficient methods 
that are practical for processing large datasets.

Recently, a method to produce random Fourier features from a given data and a positive kernel was 
proposed in [21]. The suggested method provides a random mapping of the data such that the inner product 
of any two mapped points approximates the kernel function with high probability. This scheme utilizes 
Bochner’s theorem [23] that says that any such kernel is a Fourier transform of a uniquely defined probability 
measure. Later, this work was extended in [17,30] to find explicit features for image classification.
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