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In this work we show that iterative thresholding and K means (ITKM) algorithms 
can recover a generating dictionary with K atoms from noisy S sparse signals up to 
an error ε̃ as long as the initialisation is within a convergence radius, that is up to 
a logK factor inversely proportional to the dynamic range of the signals, and the 
sample size is proportional to K logKε̃−2. The results are valid for arbitrary target 
errors if the sparsity level is of the order of the square root of the signal dimension 
d and for target errors down to K−� if S scales as S ≤ d/(� logK).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The goal of dictionary learning is to find a dictionary that will sparsely represent a class of signals. That 
is given a set of N training signals yn ∈ R

d, which are stored as columns in a matrix Y = (y1, . . . , yN ), one 
wants to find a collection of K normalised vectors φk ∈ R

d, called atoms, which are stored as columns in 
the dictionary matrix Φ = (φ1, . . . , φK) ∈ R

d×K , and coefficients xn, which are stored as columns in the 
coefficient matrix X = (x1, . . . , xN ) such that

Y = ΦX and X sparse. (1)

Research into dictionary learning comes in two flavours corresponding to the two origins of the problem, 
the slightly older one in the independent component analysis (ICA) and blind source separation (BSS) 
community, where dictionary learning is also known as sparse component analysis, and the slightly younger 
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one in the signal processing community, where it is also known as sparse coding. The main motivation for 
dictionary learning in the ICA/BSS community comes from the assumption that the signals of interest are 
generated as sparse mixtures – random sparse mixing coefficients X0 – of several sources or independent 
components – the dictionary Φ0 – which can be used to describe or explain a (natural) phenomenon, [15,30,
27,26]. For instance in the 1996 paper by Olshausen and Field, [15], which is widely regarded as the mother 
contribution to dictionary learning, the dictionary is learned on patches of natural images, and the resulting 
atoms bear a striking similarity to simple cell receptive fields in the visual cortex. A natural question in 
this context is, when the generating dictionary Φ0 can be identified from Y , that is, the sources from the 
mixtures. Therefore the first theoretical insights into dictionary learning came from this community, [18]. 
Also the first dictionary recovery algorithms with global success guarantees, which are based on finding 
overlapping clusters in a graph derived from the signal correlation matrix Y �Y , take the ICA/BSS point of 
view, [6,2].

The main motivation for dictionary learning in the signal processing community is that sparse signals are 
immensely practical, as they can be easily stored, denoised, or reconstructed from incomplete information, 
[13,33,31]. Thus the interest is less in the dictionary itself but in the fact that it will provide sparse represen-
tations X. Following the rule ‘the sparser – the better’ the obvious next step is to look for the dictionary that 
provides the sparsest representations. So given a budget of K atoms and S non-zero coefficients per signal, 
one way to concretise the abstract formulation of the dictionary learning problem in (1) is to formulate it 
as optimisation problem, such as

(P2,S) min ‖Y − ΦX‖F s.t. ‖xn‖0 ≤ S and Φ ∈ D, (2)

where ‖ · ‖0 counts the nonzero elements of a vector or matrix and D is defined as D = {Φ = (φ1, . . . , φK) :
‖φk‖2 = 1}. While (P2,S) is for instance the starting point for the MOD or K-SVD algorithms, [14,3], other 
definitions of optimally sparse lead to other optimisation problems and algorithms, [49,37,48,32,43,38]. The 
main challenge of optimisation programmes for dictionary learning is finding the global optimum, which is 
hard because the constraint manifold D is not convex and the objective function is invariant under sign 
changes and permutations of the dictionary atoms with corresponding sign changes and permutations of 
the coefficient rows. In other words for every local optimum there are 2KK! − 1 equivalent local optima.

So while in the signal processing setting there is a priori no concept of a generating dictionary, it is 
often used as auxiliary assumption to get theoretical insights into the optimisation problem. Indeed without 
the assumption that the signals are sparse in some dictionary the optimisation formulation makes little or 
no sense. For instance if the signals are uniformly distributed on the sphere in Rd, in asymptotics (P2,S)
becomes a covering problem and the set of optima is invariant under orthonormal transforms.

Based on a generating model on the other hand it is possible to gain several theoretical insights. For 
instance, how many training signals are necessary such that the sparse representation properties of a dic-
tionary on the training samples (e.g. the optimiser) will extrapolate to the whole class, [34,47,35,20]. What 
are the properties of a generating dictionary and the maximum sparsity level of the coefficients and signal 
noise such that this dictionary is a local optimiser or near a local optimiser given enough training signals, 
[21,17,39,40,19].

An open problem for overcomplete dictionaries with some first results for bases, [44,45], is whether there 
are any spurious optimisers which are not equivalent to the generating dictionary, or if any starting point of 
a descent algorithm will lead to a global optimum? A related question (in case there are spurious optima) is, 
if the generating dictionary is the global optimiser? If yes, it would justify using one of the graph clustering 
algorithms for recovering the optimum, [6,2,4,7]. This is important since all dictionary learning algorithms 
with global success guarantees are computationally very costly, while optimisation approaches are locally 
very efficient and robust to noise. Knowledge of the convergence properties of a descent algorithm, such as 
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