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Recently, the theory of diffusion maps was extended to a large class of local 
kernels with exponential decay which were shown to represent various Riemannian 
geometries on a data set sampled from a manifold embedded in Euclidean space. 
Moreover, local kernels were used to represent a diffeomorphism H between a data 
set and a feature of interest using an anisotropic kernel function, defined by a 
covariance matrix based on the local derivatives DH. In this paper, we generalize 
the theory of local kernels to represent degenerate mappings where the intrinsic 
dimension of the data set is higher than the intrinsic dimension of the feature space. 
First, we present a rigorous method with asymptotic error bounds for estimating 
DH from the training data set and feature values. We then derive scaling laws 
for the singular values of the local linear structure of the data, which allows the 
identification the tangent space and improved estimation of the intrinsic dimension 
of the manifold and the bandwidth parameter of the diffusion maps algorithm. 
Using these numerical tools, our approach to feature identification is to iterate the 
diffusion map with appropriately chosen local kernels that emphasize the features of 
interest. We interpret the iterated diffusion map (IDM) as a discrete approximation 
to an intrinsic geometric flow which smoothly changes the geometry of the data 
space to emphasize the feature of interest. When the data lies on a manifold which 
is a product of the feature manifold with an irrelevant manifold, we show that the 
IDM converges to the quotient manifold which is isometric to the feature manifold, 
thereby eliminating the irrelevant dimensions. We will also demonstrate empirically 
that if we apply the IDM to features which are not a quotient of the data manifold, 
the algorithm identifies an intrinsically lower-dimensional set embedding of the data 
which better represents the features.
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1. Introduction

Often, for high-dimensional data and especially for data lying on a nonlinear subspace of Euclidean 
space, the variables of interest do not lie in the directions of largest variance and this makes them difficult to 
identify. The features (variables of interest) may be nonlinear functions of the ambient Euclidean coordinates. 
Moreover, other nonlinear combinations of the ambient coordinates may be independent of the variables of 
interest, and should be eliminated; we call these quantities the irrelevant variables. For example, consider 
the annulus shown in Fig. 1, where the feature of interest is the radius as indicated by the color. The feature 
of interest is a nonlinear function of the ambient coordinates, namely r =

√
x2 + y2, and is completely 

independent of the irrelevant variable θ = tan−1(y/x). We should mention that a related direction which is 
being explored in the current research attempts to discover features which are common in multiple ‘views’ 
[9,6,18] using cross-diffusion between views and nonlinear canonical correlation analysis [10]. In this paper, 
we will consider the case when the desired feature is known on a training data set and we wish to learn the 
feature map in order that it may be extended to new data points. In other words, we consider the supervised 
learning problem, that is, to learn the underlying map that takes the data space to the feature space using 
a training data set that includes the feature values. In particular, we are seeking a representation of the 
feature map which can be extended to new data points.

Throughout this manuscript we will assume that the training data set consists of data points which lie 
near a d-dimensional manifold M ⊂ R

m embedded in an m-dimensional Euclidean space; we refer to M as 
the data space or data manifold and we refer to Rm as the ambient data space. We also assume that we have 
a set of feature values corresponding to each training data point, and these feature values are assumed to 
lie near a dN -dimensional manifold N ⊂ R

n embedded in an n-dimensional Euclidean space; we refer to N
as the feature space or feature manifold and we refer to Rn as the ambient feature space. We do not assume 
any knowledge of the structure of the manifolds M, N or the feature map H : M → N , we only assume 
that the feature map is differentiable.

When the feature manifold is intrinsically lower-dimensional than the data manifold, the data manifold 
contains information which is irrelevant to the feature, and we refer to this information broadly as the 
‘irrelevant variables’ or the ‘irrelevant space’. In some contexts it is possible to identify the irrelevant space 
explicitly, for example the data manifold may simply be a product manifold of the feature manifold and an 
irrelevant manifold. This is exactly the case with the annulus, which is a product manifold of the feature 
space [0, 1] � r with the irrelevant space [0, 2π) � θ. However, more complex relationships between the data 
manifold, feature manifold, and irrelevant variables are possible.

In this paper, we generalize a method introduced in [4], which was developed for representing diffeomor-
phisms to more general maps which are differentiable but not necessarily invertible. In [4], a diffeomorphism 
is represented using a local kernel to pull back the Riemannian metric from one manifold onto the other. 
With respect to the intrinsic geometry of the local kernel, the manifolds are isometric, and the isometry can 
be represented by a linear map between the eigenfunctions of the respective Laplacian operators. In this 
paper, we consider the more difficult case when the manifolds are not diffeomorphic, so that one manifold 
may even be higher dimensional than the other. This is typically the case with feature maps, since the data 
space may contain irrelevant variables. This implies that the data manifold dimension, d, may be greater 
than the feature manifold dimension, dN . In the annulus example the data space is two dimensional and 
both the feature (radius, r) and the irrelevant variable (angle, θ) are one dimensional.

The challenge of having irrelevant variables is that it violates the fundamental assumption of differential 
geometry, namely that it is local. This is because data points which differ only in the irrelevant variables will 
be far away in the data space and yet have the same feature values. This fundamental issue is independent 
of the amount of data available and is illustrated in Fig. 1. Namely, if the feature of interest is the radius of 
an annulus, then points on opposite sides of the annulus are closely related with respect to this feature of 
interest. Conversely, points which are far away in the feature space may appear relatively close in data space; 
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