Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases ${ }^{\text {s/ }}$

Yongsheng Han ${ }^{\text {a }}$, Ji Li ${ }^{\text {b }}$, Lesley A. Ward ${ }^{\text {c,* }}$
a Department of Mathematics, Auburn University, AL 36849-5310, USA
b Department of Mathematics, Macquarie University, NSW 2019, Australia
c School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA 5095, Australia

A R T I C L E IN F O

Article history:

Received 9 September 2015
Received in revised form 6 June 2016
Accepted 12 September 2016
Available online xxxx
Communicated by W.R. Madych

MSC:

primary 42B35
secondary 43A85, 42B25, 42B30

Keywords:

Spaces of homogeneous type
Orthonormal basis
Test function space
Calderón reproducing formula
Wavelet expansion
Product Hardy space
Carleson measure space
BMO
VMO
Duality

Abstract

In this paper, we first show that the remarkable orthonormal wavelet expansion for L^{p} constructed recently by Auscher and Hytönen also converges in certain spaces of test functions and distributions. Hence we establish the theory of product Hardy spaces on spaces $\widetilde{X}=X_{1} \times X_{2} \times \cdots \times X_{n}$, where each factor X_{i} is a space of homogeneous type in the sense of Coifman and Weiss. The main tool we develop is the Littlewood-Paley theory on \tilde{X}, which in turn is a consequence of a corresponding theory on each factor space. We define the square function for this theory in terms of the wavelet coefficients. The Hardy space theory developed in this paper includes product H^{p}, the dual CMO^{p} of H^{p} with the special case $\mathrm{BMO}=\mathrm{CMO}^{1}$, and the predual VMO of H^{1}. We also use the wavelet expansion to establish the CalderónZygmund decomposition for product H^{p}, and deduce an interpolation theorem. We make no additional assumptions on the quasi-metric or the doubling measure for each factor space, and thus we extend to the full generality of product spaces of homogeneous type the aspects of both one-parameter and multiparameter theory involving the Littlewood-Paley theory and function spaces. Moreover, our methods would be expected to be a powerful tool for developing wavelet analysis on spaces of homogeneous type.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We work on wavelet analysis in the setting of product spaces of homogeneous type in the sense of Coifman and Weiss [8], where each factor is of the form (X, d, μ) with d a quasi-metric and μ a doubling measure. We make no additional assumptions on d or μ; such assumptions made in previous related work are discussed

[^0]below. After recalling the systems of dyadic cubes of Hytönen and Kairema [23] and the orthonormal wavelet basis of Auscher and Hytönen [1], we define an appropriate class of test functions and the induced class of distributions on spaces of homogeneous type. We prove that the Auscher-Hytönen wavelets are test functions, and that the Auscher-Hytönen reproducing formula for L^{p} also holds for our test functions and distributions. We show that the kernels of certain wavelet operators D_{k} defined in terms of these wavelets satisfy decay and smoothness conditions similar to those of our test functions. These facts play a crucial role in our development of the Littlewood-Paley theory and function spaces, later in our paper.

We define the discrete Littlewood-Paley square function via the Auscher-Hytönen wavelet coefficients. In order to establish its L^{p}-boundedness, we also introduce a different, continuous Littlewood-Paley square function defined in terms of the wavelet operators D_{k}. We prove that the discrete and continuous square functions have equivalent norms, by first establishing some inequalities of Plancherel-Pólya type. We develop this Littlewood-Paley theory first in the one-parameter setting, and then for product spaces.

For p in a range that depends on the upper dimensions of the spaces X_{1} and X_{2} and strictly includes the range $1 \leq p<\infty$, we define the product Hardy space $H^{p}\left(X_{1} \times X_{2}\right)$ as the class of distributions whose discrete Littlewood-Paley square functions are in $L^{p}\left(X_{1} \times X_{2}\right)$. (Here we write only two factors, for simplicity, but our results extend to n factors.) For p in this range with $p \leq 1$, we define the Carleson measure space $\mathrm{CMO}^{p}\left(X_{1} \times X_{2}\right)$ via the Auscher-Hytönen wavelet coefficients, as a subset of our space of distributions, and prove the duality $\left(H^{p}\left(X_{1} \times X_{2}\right)\right)^{\prime}=\mathrm{CMO}^{p}\left(X_{1} \times X_{2}\right)$ by means of sequence spaces that form discrete analogues of these spaces. This duality result includes the special case $\left(H^{1}\left(X_{1} \times X_{2}\right)\right)^{\prime}=$ $\operatorname{BMO}\left(X_{1} \times X_{2}\right)$. We define the space $\operatorname{VMO}\left(X_{1} \times X_{2}\right)$ of functions of vanishing mean oscillation, also in terms of the Auscher-Hytönen wavelet coefficients, and prove the duality $\left(\operatorname{VMO}\left(X_{1} \times X_{2}\right)\right)^{\prime}=H^{1}\left(X_{1} \times X_{2}\right)$ by adapting an argument of Lacey-Terwilleger-Wick [24]. Using the wavelet expansion, we establish the Calderón-Zygmund decomposition for functions in our Hardy spaces $H^{p}\left(X_{1} \times X_{2}\right)$, again for a suitable range of p that strictly includes $1 \leq p<\infty$. As a consequence, we deduce an interpolation theorem for linear operators from these product Hardy spaces to Lebesgue spaces on $X_{1} \times X_{2}$.

We now set our work in context. As Meyer remarked in his preface to [11], "One is amazed by the dramatic changes that occurred in analysis during the twentieth century. In the 1930s complex methods and Fourier series played a seminal role. After many improvements, mostly achieved by the Calderón-Zygmund school, the action takes place today on spaces of homogeneous type. No group structure is available, the Fourier transform is missing, but a version of harmonic analysis is still present. Indeed the geometry is conducting the analysis."

Spaces of homogeneous type were introduced by Coifman and Weiss in the early 1970s, in [7]. We say that (X, d, μ) is a space of homogeneous type in the sense of Coifman and Weiss if d is a quasi-metric on X and μ is a nonzero measure satisfying the doubling condition. This is the definition used in Coifman and Weiss' paper [8] and in much subsequent work; the original definition given by Coifman and Weiss in [7] was slightly more general. A quasi-metric d on a set X is a function $d: X \times X \longrightarrow[0, \infty)$ satisfying (i) $d(x, y)=d(y, x) \geq 0$ for all $x, y \in X$; (ii) $d(x, y)=0$ if and only if $x=y$; and (iii) the quasi-triangle inequality: there is a constant $A_{0} \in[1, \infty)$ such that for all $x, y, z \in X$,

$$
\begin{equation*}
d(x, y) \leq A_{0}[d(x, z)+d(z, y)] . \tag{1.1}
\end{equation*}
$$

We define the quasi-metric ball by

$$
B(x, r):=\{y \in X: d(x, y)<r\} \quad \text { for } x \in X \text { and } r>0 .
$$

Note that the quasi-metric, in contrast to a metric, may not be Hölder regular and quasi-metric balls may not be open. We say that a nonzero measure μ satisfies the doubling condition if there is a constant C_{μ} such that for all $x \in X$ and $r>0$,

https://daneshyari.com/en/article/8898212

Download Persian Version:

https://daneshyari.com/article/8898212

Daneshyari.com

[^0]: करे The second and third authors are supported by the Australian Research Council under Grant No. ARC-DP120100399. The second author was also supported by a Macquarie University New Staff Grant. Parts of this paper were written while the second author was a member of the Department of Mathematics, Sun Yat-sen University, supported by NNSF of China Grant No. 11001275.

 * Corresponding author.

 E-mail addresses: hanyong@auburn.edu (Y. Han), ji.li@mq.edu.au (J. Li), lesley.ward@unisa.edu.au (L.A. Ward).
 http://dx.doi.org/10.1016/j.acha.2016.09.002
 1063-5203/© 2016 Elsevier Inc. All rights reserved.

