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One of the challenges in data analysis is to distinguish between different sources of 
variability manifested in data. In this paper, we consider the case of multiple sensors 
measuring the same physical phenomenon, such that the properties of the physical 
phenomenon are manifested as a hidden common source of variability (which we 
would like to extract), while each sensor has its own sensor-specific effects (hidden 
variables which we would like to suppress); the relations between the measurements 
and the hidden variables are unknown. We present a data-driven method based on 
alternating products of diffusion operators and show that it extracts the common 
source of variability. Moreover, we show that it extracts the common source of 
variability in a multi-sensor experiment as if it were a standard manifold learning 
algorithm used to analyze a simple single-sensor experiment, in which the common 
source of variability is the only source of variability.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Measurement systems typically have many sources of variability. When multiple sensors are used to 
measure the same physical phenomenon, some sources of variability are related to the actual physical phe-
nomenon, whereas other sources of variability are irrelevant, sensor-specific effects. In this case, extracting 
the common source of variability and discarding the sensor-specific sources may uncover the essence of the 
data, separating the relevant information from the irrelevant information.

The motivation for this work arises from applications of exploratory data analysis in areas such as complex 
biological systems, neural systems and biomedical devices. In these problems, the sensor-related sources of 
variability are not necessarily restricted to noise and interferences that can often be suppressed by averaging, 
but also include variables such as the position and orientation of a sensor, environmental effects, channel 
characteristics, and local activity in different components of the complex system. The different components 
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of complex systems like these can be modeled as different “sensors” and the interaction between them can 
be modeled as a common variable; so the term “sensor” used in this paper is interpreted more generally 
than simply a physical measurement device.

Unsupervised Manifold Learning is a class of nonlinear data-driven methods, e.g. ISOMAP [1], locally 
linear embedding (LLE) [2], Hessian Maps [3], and Laplacian Eigenmaps [4], often used to extract the 
sources of variability in given data sets. Of particular interest in the context of this paper is Diffusion 
Geometry [5–9], a manifold learning framework, in which discrete diffusion processes are constructed on 
the given data points; these diffusion processes are designed to capture the geometry of the sources of 
variability. In the case of multiple sensors, despite having more information, adding sensors adds sources of 
variability, making it more difficult to extract the common source of variability. Various methods have been 
proposed to analyze data from multiple sensors within the framework of Manifold Learning. One approach is 
to concatenate the vectors representing the data into one vector [10], but in this case it is not clear how the 
data from each sensor should be scaled, especially if the sensors are of very different nature. To address this 
challenge, it has been proposed in [11] to use Diffusion Maps to obtain a low-dimensional “standardized” 
representation of data from each sensor, and then to concatenate the low dimensional representations. 
However, these methods aggregate all sources of variability from all sensors, and they neither distinguish 
the common variable nor discard the sensor-specific variables.

A classic approach designed to extract the common source of variability from two sensors is Canonical 
Correlation Analysis (CCA) [12], which recovers highly correlated linear projections in linear systems, but 
has limited applicability to non-linear problems. Kernel CCA (KCCA), the generalization of CCA to the 
kernel feature space (e.g. [13,14]), treats some aspects of nonlinearity, but it relies on inversion of covariance 
matrices, an operation that raises statistical and numerical issues in applications. Another related method 
[15] also assumes certain linearities in the problem.

In the context of supervised learning, alternating conditional expectations (ACE) has been proposed for 
regression analysis [16], and linear combinations of kernels have been the subject of considerable work on 
multi-kernel learning (e.g. [17]). In this paper, we consider an unsupervised setting where no examples of 
the unknown hidden variables are available, and we propose a data-driven method based on an alternating 
product of diffusion operators. In the field of multi-view problems, there has been ample work based on 
various manipulation or combination of operators. For example, several approaches for metric-fusion, clus-
tering and classification, have been proposed, which rely on various manipulation of affinity matrices (e.g. 
[18–21]), Markov and diffusion matrices (e.g. [22,23]), graph Laplacians (e.g. [24,25]) and sets of nearest 
neighbors (e.g. [26,27]). Tensor products of Markov matrices have also been considered in [28], and products 
of Markov matrices and their transposes have been presented in [29]. A recent work on products of kernels 
extends diffusion maps for the case where the same underlying process is observed using several different 
modalities [30,31]. Additional aspects of multimodal data fusion are discussed in [32].

The main contribution of this paper is: 1) the presentation of an unsupervised method based on alter-
nating diffusion, and 2) a theoretical analysis of alternating diffusion showing that it recovers the common 
variable while it discards the sensor-specific variables. More specifically, we show that the common source 
of variability is extracted by this method from multiple sensors as if it were the only source of variability in 
a single sensor, extracted by a manifold learning method.

The analysis of the method distinguishes between two types of objects: observable objects, which are 
quantities that can be approximated based on the measurements (following the standard practice in manifold 
learning), and hidden objects, which are not approximated/accessible directly. We discuss a hidden effective 
diffusion process based on hidden objects and use it to develop a manifold learning method for extracting 
the geometry of the latent common variable. While the hidden effective diffusion is merely a formal object 
that is not accessible directly, our method is based on observables and builds a geometry equivalent to the 
geometry of the hidden effective diffusion.
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