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Methods designed for second-order stationary time series can be misleading when 
applied to nonstationary series, often resulting in inaccurate models and poor 
forecasts. Hence, testing time series stationarity is important especially with 
the advent of the ‘data revolution’ and the recent explosion in the number of 
nonstationary time series analysis tools. Most existing stationarity tests rely on 
a single basis. We propose new tests that use nondecimated basis libraries which 
permit discovery of a wider range of nonstationary behaviours, with greater power 
whilst preserving acceptable statistical size. Our tests work with a wide range of 
time series including those whose marginal distributions possess heavy tails. We 
provide freeware R software that implements our tests and a range of graphical 
tools to identify the location and duration of nonstationarities. Theoretical and 
simulated power calculations show the superiority of our wavelet packet approach 
in a number of important situations and, hence, we suggest that the new tests are 
useful additions to the analyst’s toolbox.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

If a discrete time series, Xt, t ∈ Z, is stationary then classical (Fourier) theory provides optimal and 
well-tested means for its analysis and Xt is required to possess the following decomposition:

Xt =
π∫

−π

A(ω) exp(iωt)dξ(ω), (1)

where dξ(ω) is an orthonormal increments process and A(ω) is the amplitude function, see, for example, 
Hannan [33] or Priestley [56].
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We are interested in the case where Xt might be locally stationary: a nonstationary process which appears 
to be stationarity over short periods but can change its statistical properties relatively slowly. Nonstationary 
time series have been studied over many years, see Page [49] or Silverman [59], for example, and theory was 
significantly advanced by a series of papers by M.B. Priestley and co-authors from the mid 1960s such as 
Priestley [55]. Dahlhaus [18] provides a recent review of locally stationary series.

Many nonstationary representations rely on the Fourier basis to provide oscillation: Silverman [59], Priest-
ley [55], Dahlhaus [17], for example. However, for nonstationary processes the Fourier basis and (1) are no 
longer canonical. For example, Priestley [56] admits general oscillatory basis functions and stipulates condi-
tions on their form and Nason et al. [44] introduced models based on nondecimated wavelets called locally 
stationary wavelet (LSW) processes and also suggested using wavelet packets to provide oscillation.

If nonstationarities in a time series are not detected, then one will proceed as if the series were stationary 
— with potentially erroneous results for models and forecasts as stationary analyses average out all the 
interesting nonstationary behaviour. A simple time series plot can often aid stationarity determination 
although their interpretation can be somewhat subjective and maybe less desirable than objective rigorous 
statistical tests.

An early hypothesis test for stationarity was proposed by Priestley and Subba Rao [57] (PSR) that 
performs an ANOVA analysis on the logarithm of a time-varying spectral estimate at a predefined set of 
times and frequencies. Software for the PSR test has recently been made publicly available via CRAN in the
fractal package by Constantine and Percival [16]. Many other tests exist. For example: those that measure 
correlation between periodogram ordinates such as Hurd and Gerr [35] and Dwivedi and Subba Rao [22], 
those that measure the discrepancy between a time-varying spectral estimate and its ‘closest’ stationary 
spectrum such as Gardner and Zivanovic [31] and Dette et al. [21], and those that measure constancy of 
some Fourier spectral functional such as Priestley and Subba Rao [57], von Sachs and Neumann [66] and 
Paparoditis [50]. See also Andrieu and Duvaut [1] for the specific alternative of a Gaussian cyclostationary 
process. These tests all work with the Fourier spectrum or closely-related quantities.

Tests that work with other bases include Nason [41], which utilised a wavelet spectrum, whereas Cardinali 
and Nason [8] works with either wavelet or Fourier bases. Another recent alternative is Jin et al. [36] which 
makes use of the Walsh basis. All these tests have different operational characteristics but it has become 
evident that nonstationarity can manifest itself in distinctly non-Walsh, non-Fourier and non-wavelet ways. 
For example, simulations in Nason [41] show that there are cases where (i) neither, (ii) both, or (iii) one or 
the other of a wavelet or Fourier test successfully detect certain kinds of nonstationarity. Section 2 provides 
additional evidence as to why measuring in both the Fourier and the wavelet directions alone is unlikely to 
be enough.

The tests mentioned above measure departures from a single type of representation: either Walsh, Fourier 
or wavelet. A key contribution here is a new approach to testing which looks for departures from multiple
basis representations. Since our test can look in more directions than one basis it should achieve higher 
power whilst retaining acceptable size characteristics. In fact, we show this by examining theoretical power 
in section 5 and via a comprehensive simulation study in section 6.

Section 3 introduces our first stationarity test based on wavelet packets using the ‘significant Haar wavelet 
coefficient’ method introduced by von Sachs and Neumann [66] and verifies its theoretical credentials. In 
practice, this test relies on a hard-to-estimate variance which sometimes results in poor empirical power. 
Section 4 circumvents this issue by establishing asymptotic equivalence of the Section 3 wavelet packet 
statistic to the L2 test statistic from Cardinali and Nason [8] and Dette et al. [21] but assesses significance 
via a simple bootstrap method.

All our tests are encapsulated in the freeware R software package BootWPTOS which also includes graphical 
tools to identify the location and scale of discovered nonstationarities.
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