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This paper develops a theory of harmonic analysis on spaces with tree metrics, 
extending previous work in this direction by Gavish, Nadler and Coifman (2010) 
[30] and Gavish and Coifman (2011, 2012) [28,29]. We show how a natural system of 
martingales and martingale differences induced by a partition tree leads to simple 
and effective characterizations of the Lipschitz norm and its dual for functions on a 
single tree metric space. The restrictions we place on the tree metrics are far more 
general than those considered in previous work. As the dual norm is equal to the 
Earth Mover’s Distance (EMD) between two probability distributions, we recover 
a simple formula for EMD with respect to tree distances presented by Charikar 
(2002) [36].
We also consider the situation where an arbitrary metric is approximated by the 
average of a family of dominating tree metrics. We show that the Lipschitz norm 
and its dual for the tree metrics can be combined to yield an approximation to the 
corresponding norms for the underlying metric.
The main contributions of this paper, however, are the generalizations of the 
aforementioned results to the setting of the product of two or more tree metric 
spaces. For functions on a product space, the notion of regularity we consider is not 
the Lipschitz condition, but rather the mixed Lipschitz condition that controls the 
size of a function’s mixed difference quotient. This condition is extremely natural for 
datasets that can be described as a product of metric spaces, such as word-document 
databases. We develop effective formulas for norms equivalent to the mixed Lipschitz 
norm and its dual, and extend our results on combining pairs of trees.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper develops a theory of harmonic analysis on spaces endowed with tree metrics, which are 
distances that arise naturally throughout pure and applied mathematics. We are concerned primarily with 
spaces of Lipschitz and mixed Lipschitz functions and their duals, and in particular, simple and computable 
characterizations of the norms on these spaces.
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1.1. The Lipschitz space, the dual space and Earth Mover’s Distance

Given a metric space (X, d), a natural way of measuring the variation of a function f defined on X is its 
Lipschitz norm, defined by

sup
x�=y

f(x) − f(y)
d(x, y) . (1)

Oftentimes, it is convenient to define the Lipschitz norm to be the sum or maximum of (1) and ‖f‖∞; we 
will consider both versions in this paper, though for the purposes of this introductory section we will restrict 
our attention to (1). If f is a differentiable function on R, the Lipschitz norm (1) is equal to ‖f ′‖∞, the 
supremum of f ’s derivative. Expression (1), however, is defined for non-differentiable functions and makes 
sense in the abstract setting of any metric space.

The space of Lipschitz functions defined on a metric space arises naturally in many areas of machine 
learning and statistics. For example, standard models in non-parametric statistics posit that unknown signals 
lie in a Hölder space (where the underlying metric space is R and the distance is defined as d(x, y) = |x −y|α
for some 0 < α < 1) or a more general regularity class [1,2]. Extrapolating a function value to new points, 
or inferring its values from noisy samples, can only be achieved if some kind of regularity on the function is 
assumed, the Lipschitz condition being a natural kind of regularity.

In the Euclidean setting of classical analysis, where we consider the space R equipped with the distance 
d(x, y) = |x − y|α for some 0 < α < 1, (1) (which is then referred to as the Hölder norm of f) can be 
shown to be equivalent in size to a number of other expressions that look at differences of averages of f over 
different scales. For example, if we take a sufficiently nice wavelet basis {ψj,k} of Rn (where j ∈ Z indexes 
the dyadic scale 2j and k ∈ Z the location), then the expression

sup
j,k

2−j(α+1/2)|〈f, ψj,k〉| (2)

is equivalent in size to (1), which is to say that the ratio of the two quantities is bounded above and below 
by finite constants not depending on f [3]. The wavelet coefficients 〈f, ψj,k〉 can be thought of as measuring 
f ’s variation across scales.

In a discrete setting, where we only have f sampled on a grid of k points in Rn, computing the Lipschitz 
norm (1) directly would require O(k2) operations, as all pairs of points need to be accounted for. However, 
using the fast wavelet transform (see, for instance, [4]), the expression (2) can be computed with only O(k)
operations. In addition to their computational tractability, the simple characterization of the Hölder norm 
of a function via its wavelet coefficients gives rise to efficient statistical procedures for signal recovery in the 
nonparametric setting; see [5].

Also of interest is the space dual to Lipschitz. Given any normed space (X , ‖·‖), one defines its dual space 
as the collection of linear functionals on X , equipped with the norm

‖T‖∗ = sup
f∈X :‖f‖≤1

〈f, T 〉. (3)

When X is the space of Lipschitz functions over a metric space (X, d), the dual norm (3) has another 
interpretation, described by the Kantorovich–Rubinstein Theorem [6,7]. If μ and ν are two probability 
measures over X, we define their Earth Mover’s Distance (EMD) to be

EMD(μ, ν) = inf
π

∫
Ω×Ω

d(x, y)dπ(x, y). (4)
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