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We present a second kind integral equation (SKIE) formulation for calculating 
the electromagnetic modes of optical waveguides, where the unknowns are only on 
material interfaces. The resulting numerical algorithm can handle optical waveguides 
with a large number of inclusions of arbitrary irregular cross section. It is capable of 
finding the bound, leaky, and complex modes for optical fibers and waveguides 
including photonic crystal fibers (PCF), dielectric fibers and waveguides. Most 
importantly, the formulation is well conditioned even in the case of nonsmooth 
geometries. Our method is highly accurate and thus can be used to calculate 
the propagation loss of the electromagnetic modes accurately, which provides the 
photonics industry a reliable tool for the design of more compact and efficient 
photonic devices. We illustrate and validate the performance of our method through 
extensive numerical studies and by comparison with semi-analytical results and 
previously published results.

Published by Elsevier Inc.

1. Introduction

Optical fibers and waveguides are important building blocks of many photonic devices and systems in 
telecommunication, data transfer and processing, and optical computing. Indeed, most photonic devices 
consist of approximately straight waveguides as input and output channels with complicated functional 
structures between the two. Two main mechanisms by which the electromagnetic wave can be confined in 
optical fibers or waveguides are total internal reflection and photonic band gap guidance [43,25]. Generally 
speaking, when the refractive index of the core is greater than that of the surrounding material, the light 
is confined in the core by total internal reflection; when the (hollow) core has a smaller refractive index, 
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confinement can be achieved through photonic band gap guidance. In both cases, the propagating electro-
magnetic modes of optical fibers and waveguides depend on physical parameters such as the input light 
wavelength, refractive indices, and the geometry of the cross section of fibers and waveguides. To reduce 
the cost of designing new photonic devices, accurate and efficient simulation tools are in high demand in 
integrated photonics industry. The first step in the photonics simulation is to compute a complete set of 
propagating modes accurately and efficiently for optical fibers or waveguides.

There has been extensive research on the mode calculation of optical fibers and waveguides and vari-
ous numerical methods have been developed. These include the effective index method [39,10], the plane 
wave expansion method [19,50,26], the multipole expansion method [56,57,33,12,11,55,31], finite difference 
methods [21,52,14,59], finite element methods [4,17,28,5,47,42,46], boundary integral methods [54,20,34,35,
13,16,3,36,37,51,45], etc. Here we do not intend to review these methods in great detail, but note that the 
effective index method is generally of low order making it difficult to calculate the propagation constant 
to high accuracy; the plane wave expansion method implies an infinite periodic medium; the multipole 
expansion method requires that each core be of circular shape and that the cores be well separated from 
each other; finite difference and finite element methods requires a volume discretization of the cross section 
in a truncated computational domain with some artificial boundary conditions or perfectly matched layers 
imposed on or near the boundary of the truncated domain. When optical fibers and waveguides consist of 
many cores of arbitrary shape, these methods often need excessively large amount of computing resource 
in order to accurately calculate the imaginary part of the propagation constant, which is related to the 
propagation loss of the electromagnetic modes and thus of fundamental importance for the design purpose.

On the other hand, boundary integral methods represent the electromagnetic fields via layer potentials 
which satisfy the underlying partial differential equations automatically. One then derives a set of integral 
equations through the matching of boundary conditions with the unknowns only on the material interfaces. 
Thus the dimension of the problem is reduced by one and complex geometries can be handled relatively easily. 
Among the aforementioned work on boundary integral methods, [13,3,36,45] present numerical examples 
with high accuracy for smooth geometries. In [3] and [45], the field components Ez and Hz (with z-axis 
the longitudinal direction of the waveguide) are represented via four distinct single layer potentials and the 
resulting system is a mixture of first kind and singular integral equations; both authors apply the circular 
case as a preconditioner to obtain a well conditioned system for smooth boundaries. In [13], Ez and Hz are 
represented via a proper linear combination of single and double layer potentials in such a way that the 
hypersingular terms are canceled out. The resulting system still contains the tangential derivatives of the 
unknown densities and layer potentials and thus is not of the second kind. In [36], Dirichlet-to-Neumann 
(DtN) maps for Hx and Hy are used to construct a system of two integral equations, where each DtN map is 
in turn computed by a boundary integral equation with a hypersingular integral operator and a method in 
[30] is applied to evaluate the DtN map to high accuracy for smooth boundaries. While these methods are all 
capable of computing the propagation constant to high accuracy for smooth cases, it is not straightforward 
to extend them to treat nonsmooth cases such as standard dielectric rectangular waveguides in integrated 
optics.

Remark 1. We would like to remark here that [3] has a subsection titled “Buried Rectangular Dielectric 
Waveguide”. In that subsection, the authors approximate the rectangular waveguide via a smooth super-
ellipse and compute the propagation constant for the super-ellipse. Though Fig. 2 in [3] achieves about 9
digit accuracy for the super-ellipse, Fig. 3 in [3] shows only about two digit accuracy for the propagation 
constant of the genuine rectangular waveguide which is regarded as a limit of the super-ellipse.

In this paper, we construct a system of SKIEs formulation for the mode calculation of optical waveguides. 
Our starting point is the dual Müller’s formulation [40] for the time-harmonic Maxwell’s equations in three 
dimensions. We then reduce the dimension of the integration domain by one using the key assumption of 
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