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The Fourier-domain Douglas–Rachford (FDR) algorithm is analyzed for phase 
retrieval with a single random mask. Since the uniqueness of phase retrieval 
solution requires more than a single oversampled coded diffraction pattern, the extra 
information is imposed in either of the following forms: 1) the sector condition on 
the object; 2) another oversampled diffraction pattern, coded or uncoded.
For both settings, the uniqueness of projected fixed point is proved and for setting 
2) the local, geometric convergence is derived with a rate given by a spectral gap 
condition. Numerical experiments demonstrate global, power-law convergence of 
FDR from arbitrary initialization for both settings as well as for 3 or more coded 
diffraction patterns without oversampling. In practice, the geometric convergence 
can be recovered from the power-law regime by a simple projection trick, resulting 
in highly accurate reconstruction from generic initialization.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

X-ray crystallography has been the preferred technology for determining the structure of a biological 
molecule over the past hundred years. The method, however, is limited by crystal quality, radiation damage 
and phase determination [44,48]. The first two problems call for large crystals that yield sufficient diffraction 
intensities while reducing the dose to individual molecules in the crystal. The difficulty of growing large, 
well-diffracting crystals is thus the major bottleneck of X-ray crystallography – a necessary experimental 
step that can range from merely challenging to pretty much impossible, particularly for large macromolecular 
assemblies and membrane proteins.

By boosting the brightness of available X-rays by 10 orders of magnitude and producing pulses well below 
100 fs duration, X-ray free electron lasers (XFEL) offer the possibility of extending structural studies to 
single, non-crystalline particles or molecules by using short intense pulses that out-run radiation damage, 
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thus circumventing the first two aforementioned problems [50]. In the so-called diffract-before-destruct ap-
proach [20,21,56], a stream of particles is flowed across the XFEL beam and randomly hit by a single X-ray 
pulse, forming a single diffraction pattern before being vaporized as a nano-plasma burst. Each diffraction 
pattern contains certain information about the planar projection of the scatterer along the direction of the 
beam which is to be recovered by phase retrieval techniques [11].

The modern approach to phase retrieval for non-periodic objects roughly starts with the Gerchberg–
Saxton algorithm [34], followed by its variant, Error Reduction (ER), and the more powerful Hybrid-Input–
Output (HIO) algorithm [32,33]. These form the cornerstones of the standard iterative transform algorithms
(ITA) [8,43].

However, the standard ITA tend to stagnate and do not perform well without additional prior information, 
such as tight support and positivity. The reason is that the plain diffraction pattern alone does not guarantee 
uniqueness of solution (see [54], however, for uniqueness under additional prior information). On the contrary, 
many phase retrieval solutions exist for a given diffraction pattern, resulting in what is called the phase
problem [37].

To this end, a promising approach is to measure the diffraction pattern with a single random mask and 
use the coded diffraction pattern as the data. As shown in [28], the uniqueness of solution is restored with a 
high probability given any scatterer whose value is restricted to a known sector (say, the upper half plane) 
of the complex plane (see Proposition 2.1).

Indeed, the sector constraint is a practical, realistic condition to impose on almost all materials as the 
imaginary part of the scatterer is proportional to the (positive) extinction coefficient with the upper half 
plane as the sector constraint [11]. For X-ray, the scatterers usually have positive real (except for resonance 
frequencies) and imaginary parts, making the first quadrant the sector constraint [18].

What happens if the sector condition is not met and consequently one coded diffraction pattern is not 
enough to ensure uniqueness? This question is particularly pertinent to the diffract-before-destruct approach 
as the particle can not withstand the radiation damage from more than one XFEL pulses.

A plausible measurement scheme is to guide the transmitted field (the transmission function [11]) from 
a planar illumination through a beam splitter [52], generating two copies of the transmitted field which are 
then measured separately as a coded diffraction pattern and a plain diffraction pattern. In this set-up, the 
object function is the transmitted field behind the particle and the phase retrieval problem becomes the 
wave-front reconstruction problem [11,36]. In practice beam splitters and the masks (or any measurement 
devices) should be used as sparingly as possible to avoid introducing excessive noises in the data.

As shown in [28], phase retrieval with two coded diffraction patterns has a unique solution, up to a 
constant phase factor, almost surely without the sector constraint (see Proposition 2.1).

With the uniqueness-ensuring sampling schemes (Section 1.1), ad hoc combinations of members of ITA 
(such as HIO and ER) can be devised to recover the true solution [30,31]. There is, however, no convergence 
proof for these algorithms, except for alternating projections, including ER (see [22] and references therein).

The main goal of the paper is to prove the local, geometric convergence of the Douglas–Rachford (DR) 
algorithm to a unique fixed point in the case of one or two oversampled diffraction patterns (Theorems 5.1, 
6.3 and 4.2) and demonstrate global convergence numerically (Section 7).

DR has the following general form: Let P1 and P2 be the projections onto the two constraint sets, 
respectively. For phase retrieval, P1 describes the projection onto the set of diffracted fields and P2 the data 
fitting projector constrained by the measured diffraction patterns. Let R1 = 2P1−I and R2 = 2P2−I be the 
respective reflection operators. The Douglas–Rachford (DR) algorithm is defined by the average alternating 
reflection scheme [24,25,41]

y(k+1) := 1
2(I + R1R2)y(k) (1)

= y(k) + P1(2P2 − I)y(k) − P2y
(k), k = 1, 2, 3 · · ·
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