
JID:YACHA AID:1156 /FLA [m3L; v1.184; Prn:4/08/2016; 16:59] P.1 (1-37)
Appl. Comput. Harmon. Anal. ••• (••••) •••–•••

Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Second-order matrix concentration inequalities

Joel A. Tropp

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 April 2015
Received in revised form 11 July 
2016
Accepted 24 July 2016
Available online xxxx
Communicated by Charles K. Chui

MSC:
primary: 60B20
secondary: 60F10
60G50
60G42

Keywords:
Concentration inequality
Moment inequality
Random matrix

Matrix concentration inequalities give bounds for the spectral-norm deviation of a 
random matrix from its expected value. These results have a weak dimensional 
dependence that is sometimes, but not always, necessary. This paper identifies 
one of the sources of the dimensional term and exploits this insight to develop 
sharper matrix concentration inequalities. In particular, this analysis delivers two 
refinements of the matrix Khintchine inequality that use information beyond the 
matrix variance to improve the dimensional dependence.

© 2016 Elsevier Inc. All rights reserved.

1. Motivation

Matrix concentration inequalities provide spectral information about a random matrix that depends 
smoothly on many independent random variables. In recent years, these results have become a dominant 
tool in applied random matrix theory. There are several reasons for the success of this approach:

• Flexibility. Matrix concentration applies to a wide range of random matrix models. In particular, we can 
obtain bounds for the spectral norm of a sum of independent random matrices in terms of the properties 
of the summands.

• Ease of use. For many applications, matrix concentration tools require only a small amount of matrix 
analysis. No expertise in random matrix theory is required to invoke the results.

• Power. For a large class of examples, including independent sums, matrix concentration bounds are 
provably close to optimal.

See the monograph [22] for an overview of this theory and a comprehensive bibliography.
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The matrix concentration inequalities in the literature are suboptimal for certain examples because of 
a weak dependence on the dimension of the random matrix. Removing this dimensional term is difficult 
because there are many situations where it is necessary. The purpose of this paper is to identify one of 
the sources of the dimensional factor. Using this insight, we will develop some new matrix concentration 
inequalities that are qualitatively better than the current generation of results, although they sacrifice some 
of our desiderata. Ultimately, we hope that this line of research will lead to general tools for applied random 
matrix theory that are flexible, easy to use, and that give sharp results in most cases.

2. The matrix Khintchine inequality

To set the stage, we present and discuss the primordial matrix concentration result, the matrix Khintchine 
inequality, which describes the behavior of a special random matrix model, called a matrix Gaussian series. 
This result already exhibits the key features of more sophisticated matrix concentration inequalities, and 
it can be used to derive concentration bounds for more general models. As such, the matrix Khintchine 
inequality serves as a natural starting point for deeper investigations.

2.1. Matrix Gaussian series

In this work, we focus on an important class of random matrices that has a lot of modeling power but 
still supports an interesting theory.

Definition 2.1 (Matrix Gaussian series). Consider fixed Hermitian matrices H1, . . . , Hn with common 
dimension d, and let {γ1, . . . , γn} be an independent family of standard normal random variables. Construct 
the random matrix

X :=
∑n

i=1
γiHi. (2.1)

We refer to a random matrix with this form as a matrix Gaussian series with Hermitian coefficients or, for 
brevity, an Hermitian matrix Gaussian series.

Matrix Gaussian series enjoy a surprising amount of modeling power. It is easy to see that we can 
express any random Hermitian matrix with jointly Gaussian entries in the form (2.1). More generally, we 
can use matrix Gaussian series to analyze a sum of independent, zero-mean, random, Hermitian matrices 
Y 1, . . . , Y n. Indeed, for any norm ‖ |·‖ | on matrices,

E‖|
∑n

i=1
Y i‖| ≤

√
2π · E

[
E

[
‖|
∑n

i=1
γiY i‖|

∣∣Y 1, . . . ,Y n

]]
. (2.2)

The process of passing from an independent sum to a conditional Gaussian series is called symmetrization. 
See [13, Lem. 6.3 and Eqn. (4.8)] for details about this calculation. Furthermore, some techniques for 
Gaussian series can be adapted to study independent sums directly without the artifice of symmetrization.

Note that our restriction to Hermitian matrices is not really a limitation. We can also analyze a rect-
angular matrix Z with jointly Gaussian entries by working with the Hermitian dilation of Z, sometimes 
known as the Jordan–Wielandt matrix. See [22, Sec. 2.1.16] for more information on this approach.

2.2. The matrix variance

Many matrix concentration inequalities are expressed most naturally in terms of a matrix extension of 
the variance.
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