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This paper introduces the multidimensional butterfly factorization as a data-sparse 
representation of multidimensional kernel matrices that satisfy the complementary 
low-rank property. This factorization approximates such a kernel matrix of size 
N × N with a product of O(logN) sparse matrices, each of which contains 
O(N) nonzero entries. We also propose efficient algorithms for constructing this 
factorization when either (i) a fast algorithm for applying the kernel matrix and 
its adjoint is available or (ii) every entry of the kernel matrix can be evaluated 
in O(1) operations. For the kernel matrices of multidimensional Fourier integral 
operators, for which the complementary low-rank property is not satisfied due to a 
singularity at the origin, we extend this factorization by combining it with either 
a polar coordinate transformation or a multiscale decomposition of the integration 
domain to overcome the singularity. Numerical results are provided to demonstrate 
the efficiency of the proposed algorithms.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Problem statement

This paper is concerned with the efficient evaluation of

u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X, (1)

where X and Ω are typically point sets in Rd for d ≥ 2, K(x, ξ) is a kernel function that satisfies a 
complementary low-rank property, g(ξ) is an input function for ξ ∈ Ω, and u(x) is an output function 
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for x ∈ X. To define this complementary low-rank property for multidimensional kernel matrices, we first 
assume that without loss of generality there are N points in each point set. In addition, the domains X
and Ω are associated with two hierarchical trees TX and TΩ, respectively, where each node of these trees 
represents a subdomain of X or Ω. Both TX and TΩ are assumed to have L = O(logN) levels with X and Ω
being the roots at level 0. The computation of (1) is essentially a matrix–vector multiplication

u = Kg,

where K := (K(x, ξ))x∈X,ξ∈Ω, g := (g(ξ))ξ∈Ω, and u := (u(x))x∈X by a slight abuse of notations. The 
matrix K is said to satisfy the complementary low-rank property if for any level � between 0 and L and for 
any node A on the �-th level of TX and any node B on the (L − �)-th level of TΩ, the submatrix KA,B :=
(K(xi, ξj))xi∈A,ξj∈B is numerically low-rank with the rank bounded by a uniform constant independent 
of N . In most applications, this numerical rank is bounded polynomially in log(1/ε) for a given precision ε. 
A well-known example of such a matrix is the multidimensional Fourier transform matrix.

For a complementary low-rank kernel matrix K, the butterfly algorithm developed in [1,2,13,14,16] en-
ables one to evaluate the matrix–vector multiplication in O(N logN) operations. More recently in [7], we 
introduced the butterfly factorization as a data-sparse multiplicative factorization of the kernel matrix K
in the one-dimensional case (d = 1):

K ≈ ULGL−1 · · ·GL/2ML/2
(
HL/2

)∗
· · ·

(
HL−1)∗ (V L

)∗
, (2)

where the depth L = O(logN) is assumed to be an even number and every factor in (2) is a sparse matrix 
with O(N) nonzero entries. Here the superscript of a matrix denotes the level of the factor rather than the 
power of a matrix. This factorization requires O(N logN) memory and applying (2) to any vector takes 
O(N logN) operations once the factorization is computed. In fact, one can view the factorization in (2)
as a compact algebraic representation of the butterfly algorithm. In [7], we also introduced algorithms for 
constructing the butterfly factorization for the following two cases:

(i) A black-box routine for rapidly computing Kg and K∗g in O(N logN) operations is available;
(ii) A routine for evaluating any entry of K in O(1) operations is given.

In this paper, we turn to the butterfly factorization for the multidimensional problems and describe how to 
construct them for these two cases.

When the kernel strictly satisfies the complementary low-rank property (e.g., the non-uniform FFT), the 
algorithms proposed in [7] can be generalized in a rather straightforward way. This is presented in detail in 
Section 2.

However, many important multidimensional kernel matrices fail to satisfy the complementary low-rank 
property in the entire domain X × Ω. Among them, the most significant example is probably the Fourier 
integral operator, which typically has a singularity at the origin ξ = 0 in the Ω domain. For such an example, 
existing butterfly algorithms provide two solutions:

• The first one, proposed in [2], removes the singularity by applying a polar transformation that maps 
the domain Ω into a new domain P . After this transformation, the new kernel matrix defined on X×P

satisfies the complementary low-rank property and one can then apply the butterfly factorization in the 
X and P domain instead. This is discussed in detail in Section 3 and we refer to this algorithm as the 
polar butterfly factorization (PBF).

• The second solution proposed in [8] is based on the observation that, though not on the entire Ω domain, 
the complementary low-rank property holds in subdomains of Ω that are well separated from the origin 
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