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A sharp version of the Balian–Low theorem is proven for the generators of finitely 
generated shift-invariant spaces. If generators {fk}Kk=1 ⊂ L2(Rd) are translated 
along a lattice to form a frame or Riesz basis for a shift-invariant space V , and 
if V has extra invariance by a suitable finer lattice, then one of the generators fk
must satisfy 

∫
Rd |x| |fk(x)|2dx = ∞, namely, f̂k /∈ H1/2(Rd). Similar results are 

proven for frames of translates that are not Riesz bases without the assumption of 
extra lattice invariance. The best previously existing results in the literature give a 
notably weaker conclusion using the Sobolev space Hd/2+ε(Rd); our results provide 
an absolutely sharp improvement with H1/2(Rd). Our results are sharp in the sense 
that H1/2(Rd) cannot be replaced by Hs(Rd) for any s < 1/2.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The uncertainty principle in harmonic analysis is a class of results which constrains how well-localized a 
function f and its Fourier transform f̂ can be. A classical expression of the uncertainty principle is given 
by the d-dimensional Heisenberg inequality

∀f ∈ L2(Rd),

⎛⎝∫
Rd

|x|2|f(x)|2dx

⎞⎠⎛⎝∫
Rd

|ξ|2|f̂(ξ)|2dξ

⎞⎠ ≥ d2

16π2 ‖f‖
4
L2(Rd), (1.1)
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where the Fourier transform f̂ ∈ L2(Rd) is defined using f̂(ξ) =
∫
Rd f(x)e−2πix·ξdx. For background on this 

and other uncertainty principles, see [26,32].
There exist versions of the uncertainty principle which not only constrain time and frequency localization 

of an individual function as in (1.1), but instead constrain the collective time and frequency localization 
of orthonormal bases and other structured spanning systems such as frames and Riesz bases. A collection 
{hn}∞n=1 in a Hilbert space H is a frame for H if there exist constants 0 < A ≤ B < ∞ such that

∀h ∈ H, A‖h‖2
H ≤

∞∑
n=1

|〈h, hn〉H|2 ≤ B‖h‖2
H.

The collection {hn}∞n=1 is a Riesz basis for H if it is a minimal frame for H, i.e., {hn}∞n=1 is a frame for H
but {hn}∞n=1\{hN} is not a frame for H for any N ≥ 1. Equivalently, {hn}∞n=1 is a Riesz basis for H if and 
only if {hn}∞n=1 is the image of an orthonormal basis under a bounded invertible operator from H to H. 
Every orthonormal basis is automatically a Riesz basis and a frame, but there exist frames that are not 
Riesz bases, and Riesz bases that are not orthonormal bases. See [22] for background on frames and Riesz 
bases.

The following beautiful example of an uncertainty principle for Riesz bases was proven in [30]. If 
{fn}∞n=1 ⊂ L2(Rd) satisfies

sup
n

⎛⎝∫
Rd

|x− an|2d+ε|fn(x)|2dx

⎞⎠⎛⎝∫
Rd

|ξ − bn|2d+ε|f̂n(ξ)|2dξ

⎞⎠ < ∞, (1.2)

for some ε > 0 and {(an, bn)}∞n=1 ⊂ R2, then {fn}∞n=1 cannot be a Riesz basis for L2(Rd). Moreover, this 
result is sharp in that ε cannot be taken to be zero, see [17,30].

There has been particular interest in uncertainty principles for bases that are endowed with an underlying 
group structure. The Balian–Low theorem for Gabor systems is a celebrated result of this type. Given 
f ∈ L2(R) the associated Gabor system G(f, 1, 1) = {fm,n}m,n∈Z is defined by fm,n(x) = e2πimxf(x − n). 
The following nonsymmetric version of the Balian–Low theorem states that if G(f, 1, 1) is a Riesz basis for 
L2(R) then f must be poorly localized in either time or frequency.

Theorem 1.1 (Balian–Low theorems). Let f ∈ L2(R) and suppose that G(f, 1, 1) is a Riesz basis for L2(R).

(1) If 1 < p < ∞ and 1
p + 1

q = 1, then⎛⎝∫
R

|x|p|f(x)|2dx

⎞⎠⎛⎝∫
R

|ξ|q|f̂(ξ)|2dξ

⎞⎠ = ∞.

(2) If f̂ is compactly supported, then ∫
R

|x| |f(x)|2dx = ∞.

The same result holds with the roles of f and f̂ interchanged.

The original Balian–Low theorem [6,41] formulated the case p = q = 2 in part (1) of Theorem 1.1
for orthonormal bases. The non-symmetrically weighted (p, q) versions with p �= q in Theorem 1.1 were 
subsequently proven in [28]. There are numerous extensions of the Balian–Low theorem, e.g., see the surveys 
[13,23] and articles [4,5,8–12,24,27,31,34,35,39,40,42,43].
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