Appl. Comput. Harmon. Anal. ••• (••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

A sharp Balian–Low uncertainty principle for shift-invariant spaces

Douglas P. Hardin ¹, Michael C. Northington V ², Alexander M. Powell [∗]*,*³

Vanderbilt University, Department of Mathematics, Nashvil le, TN 37240, United States

A R T I C L E I N F O A B S T R A C T

Article history: Received 12 October 2015 Accepted 8 May 2016 Available online xxxx Communicated by Guy Battle

MSC: 42C15

Keywords: Balian–Low theorem Shift-invariant spaces Uncertainty principle

A sharp version of the Balian–Low theorem is proven for the generators of finitely generated shift-invariant spaces. If generators $\{f_k\}_{k=1}^K \subset L^2(\mathbb{R}^d)$ are translated along a lattice to form a frame or Riesz basis for a shift-invariant space *V* , and if *V* has extra invariance by a suitable finer lattice, then one of the generators f_k must satisfy $\int_{\mathbb{R}^d} |x| |f_k(x)|^2 dx = \infty$, namely, $\widehat{f_k} \notin H^{1/2}(\mathbb{R}^d)$. Similar results are proven for frames of translates that are not Riesz bases without the assumption of extra lattice invariance. The best previously existing results in the literature give a notably weaker conclusion using the Sobolev space $H^{d/2+\epsilon}(\mathbb{R}^d)$; our results provide an absolutely sharp improvement with $H^{1/2}(\mathbb{R}^d)$. Our results are sharp in the sense that $H^{1/2}(\mathbb{R}^d)$ cannot be replaced by $H^s(\mathbb{R}^d)$ for any $s < 1/2$.

© 2016 Elsevier Inc. All rights reserved.

YACHA:1138

1. Introduction

The uncertainty principle in harmonic analysis is a class of results which constrains how well-localized a function f and its Fourier transform f can be. A classical expression of the uncertainty principle is given by the *d*-dimensional Heisenberg inequality

$$
\forall f \in L^{2}(\mathbb{R}^{d}), \qquad \left(\int_{\mathbb{R}^{d}} |x|^{2} |f(x)|^{2} dx\right) \left(\int_{\mathbb{R}^{d}} |\xi|^{2} |\widehat{f}(\xi)|^{2} d\xi\right) \geq \frac{d^{2}}{16\pi^{2}} \|f\|_{L^{2}(\mathbb{R}^{d})}^{4},\tag{1.1}
$$

* Corresponding author.

Please cite this article in press as: D.P. Hardin et al., A sharp Balian-Low uncertainty principle for shift-invariant spaces, Appl. Comput. Harmon. Anal. (2016), http://dx.doi.org/10.1016/j.acha.2016.05.001

E-mail addresses: doug.hardin@vanderbilt.edu (D.P. Hardin), michael.c.northington.v@vanderbilt.edu (M.C. Northington), alexander.m.powell@vanderbilt.edu (A.M. Powell).

 1 D. Hardin was partially supported by NSF DMS Grant 1521749, NSF DMS Grant 1516400, and NSF DMS Grant 1412428.

² M. Northington was partially supported by NSF DMS Grant 0934630, NSF DMS Grant 1521749, and NSF DMS Grant 1211687.

 $^3\,$ A. Powell was partially supported by NSF DMS Grant 1211687 and NSF DMS Grant 1521749.

<http://dx.doi.org/10.1016/j.acha.2016.05.001> 1063-5203/© 2016 Elsevier Inc. All rights reserved.

where the Fourier transform $\hat{f} \in L^2(\mathbb{R}^d)$ is defined using $\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi ix \cdot \xi} dx$. For background on this and other uncertainty principles, see [\[26,32\].](#page--1-0)

There exist versions of the uncertainty principle which not only constrain time and frequency localization of an individual function as in (1.1) , but instead constrain the collective time and frequency localization of orthonormal bases and other structured spanning systems such as frames and Riesz bases. A collection ${h_n}_{n=1}^{\infty}$ in a Hilbert space H is a *frame* for H if there exist constants $0 < A \leq B < \infty$ such that

$$
\forall h \in \mathcal{H}, \quad A \|h\|_{\mathcal{H}}^2 \le \sum_{n=1}^{\infty} |\langle h, h_n \rangle_{\mathcal{H}}|^2 \le B \|h\|_{\mathcal{H}}^2.
$$

The collection $\{h_n\}_{n=1}^{\infty}$ is a *Riesz basis* for H if it is a minimal frame for H, i.e., $\{h_n\}_{n=1}^{\infty}$ is a frame for H but $\{h_n\}_{n=1}^{\infty}\setminus\{h_N\}$ is not a frame for \mathcal{H} for any $N\geq 1$. Equivalently, $\{h_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathcal{H} if and only if $\{h_n\}_{n=1}^{\infty}$ is the image of an orthonormal basis under a bounded invertible operator from H to H. Every orthonormal basis is automatically a Riesz basis and a frame, but there exist frames that are not Riesz bases, and Riesz bases that are not orthonormal bases. See [\[22\]](#page--1-0) for background on frames and Riesz bases.

The following beautiful example of an uncertainty principle for Riesz bases was proven in [\[30\].](#page--1-0) If ${f_n}_{n=1}^{\infty} \subset L^2(\mathbb{R}^d)$ satisfies

$$
\sup_{n} \left(\int_{\mathbb{R}^d} |x - a_n|^{2d+\epsilon} |f_n(x)|^2 dx \right) \left(\int_{\mathbb{R}^d} |\xi - b_n|^{2d+\epsilon} |\widehat{f_n}(\xi)|^2 d\xi \right) < \infty,
$$
\n(1.2)

for some $\epsilon > 0$ and $\{(a_n, b_n)\}_{n=1}^{\infty} \subset \mathbb{R}^2$, then $\{f_n\}_{n=1}^{\infty}$ cannot be a Riesz basis for $L^2(\mathbb{R}^d)$. Moreover, this result is sharp in that ϵ cannot be taken to be zero, see [\[17,30\].](#page--1-0)

There has been particular interest in uncertainty principles for bases that are endowed with an underlying group structure. The Balian–Low theorem for Gabor systems is a celebrated result of this type. Given $f \in L^2(\mathbb{R})$ the associated *Gabor* system $\mathcal{G}(f, 1, 1) = \{f_{m,n}\}_{m,n \in \mathbb{Z}}$ is defined by $f_{m,n}(x) = e^{2\pi imx}f(x-n)$. The following nonsymmetric version of the Balian–Low theorem states that if $\mathcal{G}(f, 1, 1)$ is a Riesz basis for $L^2(\mathbb{R})$ then *f* must be poorly localized in either time or frequency.

Theorem 1.1 *(Balian–Low theorems).* Let $f \in L^2(\mathbb{R})$ and suppose that $\mathcal{G}(f, 1, 1)$ is a Riesz basis for $L^2(\mathbb{R})$.

(1) If $1 < p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$
\left(\int_{\mathbb{R}}|x|^p|f(x)|^2dx\right)\left(\int_{\mathbb{R}}|\xi|^q|\widehat{f}(\xi)|^2d\xi\right)=\infty.
$$

(2) If f is compactly supported, then

$$
\int_{\mathbb{R}} |x| |f(x)|^2 dx = \infty.
$$

The same result holds with the roles of f and f interchanged.

The original Balian–Low theorem [\[6,41\]](#page--1-0) formulated the case $p = q = 2$ in part (1) of Theorem 1.1 for orthonormal bases. The non-symmetrically weighted (p, q) versions with $p \neq q$ in Theorem 1.1 were subsequently proven in [\[28\].](#page--1-0) There are numerous extensions of the Balian–Low theorem, e.g., see the surveys [\[13,23\]](#page--1-0) and articles [4,5,8-12,24,27,31,34,35,39,40,42,43].

Please cite this article in press as: D.P. Hardin et al., A sharp Balian-Low uncertainty principle for shift-invariant spaces, Appl. Comput. Harmon. Anal. (2016), http://dx.doi.org/10.1016/j.acha.2016.05.001

Download English Version:

<https://daneshyari.com/en/article/8898234>

Download Persian Version:

<https://daneshyari.com/article/8898234>

[Daneshyari.com](https://daneshyari.com/)