Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

## A class of fully nonlinear equations on the closed manifold $\stackrel{\star}{\approx}$

Weina Lu<sup>a</sup>, Xiaoling Zhang<sup>b,\*</sup>, Jinhua Yang<sup>a</sup>

 <sup>a</sup> Department of Mathematics, Xinjiang Normal University, Urumqi, Xinjiang Province, 830046, PR China
 <sup>b</sup> College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang Province, 830046, PR China

ABSTRACT

## A R T I C L E I N F O

Article history: Received 9 April 2017 Received in revised form 17 July 2018 Available online xxxx Communicated by F. Fang

MSC: 53C21 35J60

Keywords: k-order elementary symmetric function Prescribed curvature problem

## 1. Introduction

Let  $(M^n, g)$ , for  $n \ge 3$ , be a closed Riemannian manifold. Denote the Ricci tensor and the scalar tensor by *Ric* and *R* (or  $R_q$ ), respectively. Consider the following combination type tensor

is in the convex cone  $\Gamma_k^+$  and 2t > s > 0.

$$T_t^s := sRic - tR_q \cdot g$$

on M, where s, t are some constants. Clearly,  $T_0^1$  is just the Ricci tensor,  $T_{1/2(n-1)(n-2)}^{1/(n-2)}$  is the Schouten tensor and  $T_{1/2(n-2)}^{1/(n-2)}$  is the Einstein tensor.

Let [g] be the set of the metrics conforming to g, and  $\lambda(T_t^s)$  be the eigenvalue of  $g^{-1}T_t^s$ . The prescribed k-curvature problems of  $T_t^s$  is to find a metric  $\tilde{g} \in [g]$  satisfying the following equation

\* Corresponding author.









A generalized k-Yamabe problem is considered in this paper. Denoting Ric and R

the Ricci tensor and the scalar curvature of a Riemannian space (M, g) respectively,

we consider the  $\sigma_k$ -type equation  $\sigma_k(\lambda_{st}) = const.$ , where  $\lambda_{st}$  are the eigenvalues

of the symmetric tensor  $sRic - tR \cdot g$  and  $\sigma_k$  is the k - th elementary symmetric

polynomial. We show that the equation is solvable in a conformal class if  $sRic-tR\cdot g$ 

<sup>&</sup>lt;sup>\*</sup> This work was supported by XJNU201417, XJNU201506, BS130107, NNSFC (No. 11461064), the "13th Five-Year" Plan for Key Discipline Mathematics (No. 17SDKD1104) Xinjiang Normal University and Natural Science Foundation of Xinjiang (Grant No. 2015211C277).

E-mail addresses: 381767046@qq.com (W. Lu), xlzhang@ymail.com (X. Zhang), 1511337295@qq.com (J. Yang).

$$\sigma_k\left(\lambda\left(\tilde{T}_t^s\right)\right) = const.,\tag{1.1}$$

where  $1 \leq k \leq n$  is an integer,  $\tilde{T}_t^s$  is the tensor with respect to  $\tilde{g}$ , and for all  $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ , the elementary symmetric function  $\sigma_k \colon \mathbb{R}^n \to \mathbb{R}$  is defined by

$$\sigma_k(\lambda) = \sigma_k(\lambda_1, \cdots, \lambda_n) = \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}.$$

When k = 1 and  $s \neq nt$ , Equation (1.1) is just the well known Yamabe problem (up to a constant), which has been solved by Yamabe, Trudinger, Aubin and Schoen (see [9]). For  $k \ge 2$ ,  $s = \frac{1}{n-2}$  and  $t = \frac{s}{2(n-1)}$ , Equation (1.1) is the k-Yamabe problem which was introduced by Gursky-Viaclovsky in 2003 [5] and has been extensively studied (see [1,2,4,6,11,12,14] etc.).

Let  $\tilde{g} = e^{2u}g$ , where u is a function defined on M. Then  $T_t^s$  transforms according to the formula

$$\tilde{T}_t^s = [2t(n-1) - s] \, \Delta ug - s(n-2) \, \nabla^2 u + s(n-2) \, du \otimes du$$

$$+ [t(n-1) - s] \, (n-2) \, |\nabla u|^2 \cdot g + T_t^s,$$
(1.2)

where  $\nabla u, \nabla^2 u$  denote the gradient and Hessian of u with respect to q, respectively. Hence, the problem (1.1) is corresponding to the following equation

$$\sigma_{k}^{\frac{1}{k}} \left( \lambda \left[ \frac{\left[ 2t\left(n-1\right)-s\right] \bigtriangleup ug - s\left(n-2\right) \nabla^{2} u + s\left(n-2\right) du \otimes du}{+\left[ t\left(n-1\right)-s\right] \left(n-2\right) |\nabla u|^{2} g + T} \right] \right) = e^{2u} \cdot const.$$
(1.3)

Clearly, (1.3) is a fully nonlinear partial differential equation when  $k \ge 2$ .

To solve Equation (1.3), we will consider a more general equation in this paper. Let

$$\Gamma_k^+ = \{ \lambda \in \mathbb{R}^n | \sigma_j(\lambda) > 0, \forall 1 \le j \le k \}.$$

Clearly,  $\Gamma_n^+ \subset \Gamma_{n-1}^+ \subset \cdots \subset \Gamma_1^+$ . Let  $\Gamma^+$  be an open convex cone in  $\mathbb{R}^n$  with vertex at the origin and satisfy  $\Gamma_n^+ \subset \Gamma^+ \subset \Gamma_1^+.$ 

Let  $F: \mathbb{R}^n \to \mathbb{R}$  be a smooth symmetric function, homogeneous of degree one and satisfy the following in  $\Gamma^+$ :

(A1) F is positive, and F = 0 on  $\partial \Gamma^+$ ;

(A2) F is monotone (i.e.,  $\frac{\partial F}{\partial \lambda_i}$  is positive); (A3) F is concave (i.e.,  $\frac{\partial^2 F}{\partial \lambda_i \partial \lambda_j}$  is negative semi-definite).

By the argument in [13], we also have

$$\sum_{i} \frac{\partial F}{\partial \lambda_{i}} \left( \lambda \right) \ge F\left( e \right) > 0 \text{ in } \Gamma^{+}, \tag{A4}$$

where  $e = (1, 1, \dots, 1) \in \mathbb{R}^n$ . It is well known that  $\sigma_k^{\frac{1}{k}}$  satisfies all the conditions above on  $\Gamma_k^+$  (see [10]).

Given a smooth function  $\varphi(x,z): M^n \times \mathbb{R} \to \mathbb{R}$ , we consider the following equation

$$F\left(\lambda\left(\alpha \triangle ug - \beta \nabla^2 u + a\left(x\right) du \otimes du + b\left(x\right) |\nabla u|^2 g + B\right)\right) = \varphi\left(x, u\right),\tag{1.4}$$

where  $\alpha$ ,  $\beta$  are constants,  $a, b \in C^{\infty}(M)$ , and B is a smooth symmetric (0, 2)-tensor on M. For convenience, we define

Download English Version:

## https://daneshyari.com/en/article/8898243

Download Persian Version:

https://daneshyari.com/article/8898243

Daneshyari.com