A class of fully nonlinear equations on the closed manifold ${ }^{2 \pi}$

Weina Lu ${ }^{\text {a }}$, Xiaoling Zhang ${ }^{\mathrm{b}, *}$, Jinhua Yang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Xinjiang Normal University, Urumqi, Xinjiang Province, 830046,
PR China
${ }^{\text {b }}$ College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang Province, 830046, PR China

A R T I C L E I N F O

Article history:

Received 9 April 2017
Received in revised form 17 July
2018
Available online xxxx
Communicated by F. Fang

$M S C$:

53C21
35J60
Keywords:
k-order elementary symmetric
function
Prescribed curvature problem

Abstract

A generalized k-Yamabe problem is considered in this paper. Denoting Ric and R the Ricci tensor and the scalar curvature of a Riemannian space (M, g) respectively, we consider the σ_{k}-type equation $\sigma_{k}\left(\lambda_{s t}\right)=$ const., where $\lambda_{s t}$ are the eigenvalues of the symmetric tensor sRic $-t R \cdot g$ and σ_{k} is the $k-t h$ elementary symmetric polynomial. We show that the equation is solvable in a conformal class if $s R i c-t R \cdot g$ is in the convex cone Γ_{k}^{+}and $2 t>s>0$.

© 2018 Published by Elsevier B.V.

1. Introduction

Let $\left(M^{n}, g\right)$, for $n \geq 3$, be a closed Riemannian manifold. Denote the Ricci tensor and the scalar tensor by Ric and R (or R_{g}), respectively. Consider the following combination type tensor

$$
T_{t}^{s}:=s \operatorname{Ric}-t R_{g} \cdot g
$$

on M, where s, t are some constants. Clearly, T_{0}^{1} is just the Ricci tensor, $T_{1 / 2(n-1)(n-2)}^{1 /(n-2)}$ is the Schouten tensor and $T_{1 / 2(n-2)}^{1 /(n-2)}$ is the Einstein tensor.

Let $[g]$ be the set of the metrics conforming to g, and $\lambda\left(T_{t}^{s}\right)$ be the eigenvalue of $g^{-1} T_{t}^{s}$. The prescribed k-curvature problems of T_{t}^{s} is to find a metric $\tilde{g} \in[g]$ satisfying the following equation

[^0]https://doi.org/10.1016/j.difgeo.2018.08.001
0926-2245/© 2018 Published by Elsevier B.V.
\[

$$
\begin{equation*}
\sigma_{k}\left(\lambda\left(\tilde{T}_{t}^{s}\right)\right)=\text { const. } \tag{1.1}
\end{equation*}
$$

\]

where $1 \leq k \leq n$ is an integer, \tilde{T}_{t}^{s} is the tensor with respect to \tilde{g}, and for all $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{R}^{n}$, the elementary symmetric function $\sigma_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by

$$
\sigma_{k}(\lambda)=\sigma_{k}\left(\lambda_{1}, \cdots, \lambda_{n}\right)=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}} \cdots \lambda_{i_{k}} .
$$

When $k=1$ and $s \neq n t$, Equation (1.1) is just the well known Yamabe problem (up to a constant), which has been solved by Yamabe, Trudinger, Aubin and Schoen (see [9]). For $k \geq 2, s=\frac{1}{n-2}$ and $t=\frac{s}{2(n-1)}$, Equation (1.1) is the k-Yamabe problem which was introduced by Gursky-Viaclovsky in 2003 [5] and has been extensively studied (see [1,2,4,6,11,12,14] etc.).

Let $\tilde{g}=e^{2 u} g$, where u is a function defined on M. Then T_{t}^{s} transforms according to the formula

$$
\begin{align*}
\tilde{T}_{t}^{s} & =[2 t(n-1)-s] \Delta u g-s(n-2) \nabla^{2} u+s(n-2) d u \otimes d u \tag{1.2}\\
& +[t(n-1)-s](n-2)|\nabla u|^{2} \cdot g+T_{t}^{s},
\end{align*}
$$

where $\nabla u, \nabla^{2} u$ denote the gradient and Hessian of u with respect to g, respectively. Hence, the problem (1.1) is corresponding to the following equation

$$
\sigma_{k}^{\frac{1}{k}}\left(\lambda\left[\begin{array}{c}
{[2 t(n-1)-s] \triangle u g-s(n-2) \nabla^{2} u+s(n-2) d u \otimes d u} \tag{1.3}\\
+[t(n-1)-s](n-2)|\nabla u|^{2} g+T
\end{array}\right]\right)=e^{2 u} \cdot \text { const. }
$$

Clearly, (1.3) is a fully nonlinear partial differential equation when $k \geq 2$.
To solve Equation (1.3), we will consider a more general equation in this paper.
Let

$$
\Gamma_{k}^{+}=\left\{\lambda \in \mathbb{R}^{n} \mid \sigma_{j}(\lambda)>0, \forall 1 \leq j \leq k\right\} .
$$

Clearly, $\Gamma_{n}^{+} \subset \Gamma_{n-1}^{+} \subset \cdots \subset \Gamma_{1}^{+}$. Let Γ^{+}be an open convex cone in \mathbb{R}^{n} with vertex at the origin and satisfy $\Gamma_{n}^{+} \subset \Gamma^{+} \subset \Gamma_{1}^{+}$.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth symmetric function, homogeneous of degree one and satisfy the following in Γ^{+}:
(A1) F is positive, and $F=0$ on $\partial \Gamma^{+}$;
(A2) F is monotone (i.e., $\frac{\partial F}{\partial \lambda_{i}}$ is positive);
(A3) F is concave (i.e., $\frac{\partial^{2} F}{\partial \lambda_{i} \partial \lambda_{j}}$ is negative semi-definite).
By the argument in [13], we also have

$$
\begin{equation*}
\sum_{i} \frac{\partial F}{\partial \lambda_{i}}(\lambda) \geq F(e)>0 \text { in } \Gamma^{+} \tag{A4}
\end{equation*}
$$

where $e=(1,1, \cdots, 1) \in \mathbb{R}^{n}$. It is well known that $\sigma_{k} \frac{1}{k}$ satisfies all the conditions above on Γ_{k}^{+}(see [10]).
Given a smooth function $\varphi(x, z): M^{n} \times \mathbb{R} \rightarrow \mathbb{R}$, we consider the following equation

$$
\begin{equation*}
F\left(\lambda\left(\alpha \triangle u g-\beta \nabla^{2} u+a(x) d u \otimes d u+b(x)|\nabla u|^{2} g+B\right)\right)=\varphi(x, u) \tag{1.4}
\end{equation*}
$$

where α, β are constants, $a, b \in C^{\infty}(M)$, and B is a smooth symmetric $(0,2)$-tensor on M. For convenience, we define

https://daneshyari.com/en/article/8898243

Download Persian Version:
https://daneshyari.com/article/8898243

Daneshyari.com

[^0]: है This work was supported by XJNU201417, XJNU201506, BS130107, NNSFC (No. 11461064), the "13th Five-Year" Plan for Key Discipline Mathematics (No. 17SDKD1104) Xinjiang Normal University and Natural Science Foundation of Xinjiang (Grant No. 2015211C277).

 * Corresponding author.

 E-mail addresses: 381767046@qq.com (W. Lu), xlzhang@ymail.com (X. Zhang), 1511337295@qq.com (J. Yang).

