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1. Introduction and main results

In this article, we investigate the transitivity of geodesic flows on connected compact rank 1 manifolds
without focal points.

Let (M, g) be a C> connected compact n-dimensional Riemannian manifold, where g is a Riemannian
metric. For any p € M and v € T, M, let 7, be the unique geodesic satisfying the initial conditions v, (0) = p
and 7, (0) = v. Without special indication, all geodesics we are considering in this paper are the geodesics
with unit speed. The geodesic flow on the unit tangent bundle SM is defined as:

¢ SM — SM,  (p,v) = (w(t),7,(t), ViteR.

Definition 1.1. Let  be a geodesic on (M, g). Two distinct points p = v(t1) and g = y(t2) are called focal if
there is a Jacobi field J along ~ such that J(t1) =0, J'(t;) # 0 and 4% |s—¢, ||J(t)]|> = 0. (M, g) is called a
manifold without focal points if there is no focal points on any geodesic in (M, g).
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It is well known that nonpositively curved manifolds have no focal points. In [4], R. Gulliver construct
examples of the manifolds without focal points, which have some regions with positive curvature. Thus
manifolds without focal points can be regarded as a nontrivial generalization of the manifolds of nonpositive
curvature.

Now we give the definition of the geometric rank, which measures the global flatness of (M, g) in a sense.
This concept was first proposed by W. Ballmann—M. Brin—P. Eberlein in [1].

Definition 1.2. Let (M, ¢g) be a complete manifold without focal points. For each v € SM, we define rank(v)
to be the dimension of the vector space of the parallel Jacobi fields along the geodesic ~,, and rank(M) :=
min{rank(v) | v € SM}. For a geodesic v we define rank(y) = rank(v/(¢)), V t € R.

We call (M, g) is a rank 1 manifold if rank(M) = 1. For example, manifolds of negative curvature are
rank 1 manifolds. Recently, with F. Wang and W. Wu, we investigate the ergodicity and measures of maximal
entropy for geodesic flows on rank 1 manifolds without focal points [5-7].

In [2], P. Eberlein proved that the geodesic flow on a compact rank 1 manifold of nonpositive curvature
is transitive, i.e., there exists a unit tangent vector whose orbit (w.r.t. geodesic flow) is dense in SM. In this
article, based on our previous results in [6], we generalize Eberlein’s result to the manifold without focal
points. This is the following theorem:

Theorem A. Suppose (M, g) is a smooth compact rank 1 Riemannian manifold without focal points, then
the geodesic flow ¢* : SM — SM is transitive.

The details of the proof of Theorem A will be given in the next section. There are some key differences
between our proof and Eberlein’s original proof. For example Eberlein’s arguments use the law of cosines,
which is no longer valid for the manifolds without focal points. We overcome the difficulties by using our
earlier results in [6].

2. Proof of Theorem A

Let (M, g) be a compact Riemannian manifold without focal points, while (X, §) is its universal covering,
and d is the distance on X induced by the lifted Riemannian metric §. It is a standard fact that X/T' = M,
where ' & 71 (M) is a discrete subgroup of the isometry group Iso(X). In this paper, we use ¢’ to represent
both the geodesic flow on SM and the lifted geodesic flow on SX.

For two geodesics v; and 2 in X, we call 1 and 2 are positively asymptotic (negatively asymptotic) if
there is a positive number C' > 0 such that

d(mi(t),72(t) <C, Vi>0 (Vt<0).

The relation of positive (negative) asymptoticity is an equivalence relation among geodesics on X. The
equivalence class of geodesics that are positively (negatively) asymptotic to a given geodesic vy is called
points at infinity, which is denoted by v(+00) (y(—00)). We use X (c0) to denote the set of all points at
infinity.

Let X = X U X(00). For each point p € X and v € S,X, for any points z € X — {p} and positive
number €, we define the following notations:

o Ypo is the geodesic from p to & with v, ,(0) = p;
o L0,2) = £(v,7),(0));
o Clvye)={qe X —{p}| £L(v,q) < €}.
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