Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

# On conformal pseudo-subriemannian fundamental graded Lie algebras of semisimple type

## Tomoaki Yatsui

Masakae 1-9-2, Otaru 047-0003, Japan

#### A R T I C L E I N F O

Article history: Received 19 November 2016 Available online xxxx Communicated by D.V. Alekseevsky

*MSC:* 76M60

Keywords: Fundamental graded Lie algebras Conformal pseudo-subriemannian geometry

#### ABSTRACT

We introduce the notion of a conformal pseudo-subriemannian fundamental graded Lie algebra. Moreover we give a classification of conformal pseudo-subriemannian fundamental graded Lie algebras of semisimple type and their prolongations. Also we apply these results to a conformal pseudo-subriemannian geometry. © 2018 Elsevier B.V. All rights reserved.

### 1. Introduction and notation

This paper is the sequel to the previous one [16]. We first recall the notion of fundamental graded Lie algebras. Moreover we define the notion of conformal pseudo-subriemannian fundamental graded Lie algebras, which is a generalization of conformal subriemannian fundamental graded Lie algebras.

A graded Lie algebra (GLA)  $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$  is called a fundamental graded Lie algebra (FGLA) if it is a finite dimensional graded Lie algebra generated by nonzero subspace  $\mathfrak{g}_{-1}$ . An FGLA  $\mathfrak{m}$  is said to be of the  $\mu$ -th kind if  $\mathfrak{g}_{-\mu} \neq \{0\}$  and  $\mathfrak{g}_p = \{0\}$  for  $p < -\mu$ . Let  $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$  be an FGLA over  $\mathbb{R}$  such that  $\mathfrak{g}_{-2} \neq \{0\}$ , and let [g] be the conformal class of a nondegenerate symmetric bilinear form g on  $\mathfrak{g}_{-1}$ . Then the pair  $(\mathfrak{m}, [g])$  is called a conformal pseudo-subriemannian FGLA. In particular if g is positive definite, then  $(\mathfrak{m}, [g])$  is called a conformal subriemannian FGLA. Also if the signature of g has the form (r, r), then  $(\mathfrak{m}, [g])$  is called a conformal neutral-subriemannian FGLA. Note that if  $(\mathfrak{m}, [g])$  is a conformal pseudo-subriemannian FGLA, so is  $(\mathfrak{m}, [-g])$ . Given two conformal pseudo-subriemannian FGLAs  $(\mathfrak{m}_1, [g_1])$  and  $(\mathfrak{m}_2, [g_2])$  we say that  $(\mathfrak{m}_1, [g_1])$  is isomorphic to  $(\mathfrak{m}_2, [g_2])$  if there exists a graded Lie algebra isomorphism  $\varphi$  of  $\mathfrak{m}_1$  onto  $\mathfrak{m}_2$  such





E-mail address: yatsui@frontier.hokudai.ac.jp.

that  $[\varphi^* g_2] = [g_1]$ . Also we say that  $(\mathfrak{m}_1, [g_1])$  is equivalent to  $(\mathfrak{m}_2, [g_2])$  if  $(\mathfrak{m}_1, [g_1])$  is isomorphic to  $(\mathfrak{m}_2, [g_2])$  or  $(\mathfrak{m}_2, [-g_2])$ .

Let  $(\mathfrak{m}, [g])$  be a conformal pseudo-subriemannian FGLA, and let  $\mathfrak{g}_0$  be the Lie algebra consisting of all the derivations D of  $\mathfrak{m}$  satisfying the following conditions: (1)  $D(\mathfrak{g}_p) \subset \mathfrak{g}_p$  for all p < 0; (2)  $D|\mathfrak{g}_{-1} \in \mathfrak{co}(\mathfrak{g}_{-1}, g)$ . There exists a GLA  $\mathfrak{l} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{l}_p$  such that: (i)  $\mathfrak{g}_p = \mathfrak{l}_p$  for  $p \leq 0$ ; (ii)  $\mathfrak{l} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{l}_p$  is transitive, i.e., for  $X \in \mathfrak{l}_p$ ,  $p \geq 0$ , if  $[X, \mathfrak{l}_{-1}] = \{0\}$ , then X = 0; (iii)  $\mathfrak{l} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{l}_p$  is maximum among GLAs satisfying conditions (i) and (ii) above, which is called the prolongation of  $(\mathfrak{m}, [g])$  (For more details on the prolongation, see [12, §5]). Note that the prolongation of  $(\mathfrak{m}, [g])$  is finite dimensional (Lemma 3.2). Clearly the prolongation of  $(\mathfrak{m}, [g])$ .

It is known that the prolongation  $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$  of a conformal subriemannian FGLA  $(\mathfrak{m}, [g])$  satisfying the condition  $\mathfrak{g}_1 \neq \{0\}$  is a real rank one simple graded Lie algebra ([4], [16]). In contrast, there exists a conformal neutral-subriemannian FGLA  $(\mathfrak{m}, [g])$  such that the prolongation  $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$  of  $(\mathfrak{m}, [g])$  is

nonsemisimple and such that  $\mathfrak{g}_1 \neq \{0\}$  (cf. Example 5.1). A conformal pseudo-subriemannian FGLA is said to be of semisimple type if the prolongation is semisimple. In this paper we give a strong classification of conformal pseudo-subriemannian FGLAs of semisimple type and their prolongations (Theorem 5.2). Here, by a strong classification, we mean a classification using root systems plus an explicit realization of all the subspaces  $\mathfrak{g}_p$ . In particular we prove that the prolongation of a conformal pseudo-subriemannian FGLA of semisimple type is simple. In section 6 we give a local classification of maximally homogeneous conformal pseudo-subriemannian manifolds of semisimple type (Theorem 6.1).

#### Notation and conventions

- (1) Blackboard bold is used for the standard systems Z (the ring of integers), R (real numbers), C (complex numbers), C' (split complex numbers), the real division rings H (Hamilton's quaternions), H' (split quaternions), O (Cayley's [nonassociative] octonions) and O' (split octonions). We denote by R<sub>>0</sub> (resp. R<sub>≥0</sub>) the set consisting of all the positive real numbers (resp. non-negative real numbers). For K = C, C', H, H', O or O', we set Im K = { z ∈ K : Re z = 0 }.
- (2) For any real vector space V we denote by  $V(\mathbb{C})$  the complexification of V.
- (3) Let V be a finite dimensional real vector space, and let g be a nondegenerate symmetric bilinear form on V. We set

$$\mathfrak{so}(V,g) = \{ A \in \mathfrak{gl}(V) : A \cdot g = 0 \},$$
  
$$\mathfrak{co}(V,g) = \{ A \in \mathfrak{gl}(V) : A \cdot g = \eta_A g \text{ for some } \eta_A \in \mathbb{R} \},$$

where  $A \cdot g$  is a symmetric bilinear form on V defined by  $(A \cdot g)(x, y) = g(Ax, y) + g(x, Ay)$   $(x, y \in V)$ . We define a linear mapping  $g^{\flat} : V \to V^*$  by  $g^{\flat}(x)(y) = g(x, y)$   $(x, y \in V)$ . Since g is non-degenerate,  $g^{\flat}$  is a linear isomorphism. We denote by  $g^{\sharp}$  the inverse mapping of  $g^{\flat}$ .

- (4) For a graded vector space  $V = \bigoplus_{p \in \mathbb{Z}} V_p$  and  $k \in \mathbb{Z}$  we denote subspaces  $\bigoplus_{p \leq k} V_p$  and  $\bigoplus_{p \geq k} V_p$  by  $V_{\leq k}$  and  $V_{\geq k}$  respectively. Also we denote the subspace  $\bigoplus_{p < 0} V_p$  by  $V_-$ . We call  $V_-$  the negative part of V.
- (5) For a reductive Lie algebra  $\mathfrak{g}$ , we denote by  $\mathfrak{g}^{ss}$  the semisimple part of  $\mathfrak{g}$ .
- (6) For a GLA  $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$  we denote by  $\operatorname{Aut}_0(\mathfrak{g})$  the group consisting of all the automorphisms a of  $\mathfrak{g}$  such that  $a(\mathfrak{g}_p) = \mathfrak{g}_p$  for all  $p \in \mathbb{Z}$ .

Download English Version:

https://daneshyari.com/en/article/8898263

Download Persian Version:

https://daneshyari.com/article/8898263

Daneshyari.com