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It is well-known that normal extremals in sub-Riemannian geometry are curves 
that locally minimize the length functional (equivalently, the energy functional). 
Most proofs of this fact do not make, however, an explicit use of relations between 
local optimality and the geometry of the problem. In this paper, we provide a new 
proof of that classical result, which gives insight into direct geometric reasons for 
local optimality. Also the relation of the regularity of normal extremals with their 
optimality becomes apparent in our approach.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Motivations Our initial motivation to undertake this research comes from our recent study [7]. In that 
paper we developed a contact geometry approach to optimal control problems. As a particular application we 
discussed sub-Riemannian (SR, in short) geodesic problems and obtained elegant geometric characterizations 
of both normal and abnormal SR extremals. In particular, normal SR extremals (NSREs, in short) can be 
nicely described in terms of the distribution orthogonal to the actual extremal and the flow related with the 
optimal control. That result, here formulated as Theorem 2.2, was first obtained in [2]. Clearly, NSREs satisfy 
only first-order conditions for optimality, yet it is well-known that these suffice for their local optimality. 
Thus it is natural to ask the following question:
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How does the geometry of NSREs reflect their local optimality? (Q)

In this paper we answer question (Q) providing a detailed geometric proof of local optimality of NSREs 
(Theorem 2.3). Our original idea, which allowed to relate the geometric characterization of NSREs with 
their local optimality, is to study homotopies (and the related variations) of SR trajectories. We discuss the 
details of our approach in the next paragraph.

The standard proofs of the local optimality of NSREs (see, e.g., [8,9]) are deeply rooted in symplectic 
geometry. Usually one starts with the Hamiltonian description of a NSRE γ provided by the Pontryagin 
Maximum Principle [10]. The basic idea is to construct a solution of a Hamilton–Jacobi equation in a 
neighborhood of γ, and then to use this solution to build the so-called calibration of γ, i.e., a closed 1-form 
which estimates the SR length from below with an equality on γ (see Sec. 1.9 of [9] and for another proof 
using similar arguments [11]). To prove the local optimality of the considered NSRE we integrate the 
calibration over a closed contour containing γ and use Stokes theorem. That method is very elegant and 
powerful although it does not use explicitly the geometric reasons behind the local optimality of NSREs. 
We believe that the new proof presented in this work, using homotopies, gives an insight into these reasons. 
For example, the relation between optimality and regularity for NSREs is apparent in our approach. In our 
proof we do not use symplectic geometry, working directly with the SR distribution and the SR metric, and 
use only basic differential-geometric tools. We hope that similar ideas will allow to study the optimality 
issues for other classes of optimal control problems. Let us note that another point of view on NSREs can be 
found in [4], where local optimality of smooth extremals (for a general optimal control problem) is discussed 
from the perspective of the second-order necessary optimality conditions.

Outline of the proof Let us now sketch the main steps of the proof and explain geometric reasons which 
make NSREs locally optimal.

First observe that since we are interested in local optimality only, without any loss of generality we can 
reformulate the (local) SR geodesic problem as an optimal control problem on Rn, quadratic in cost and 
linear in controls.

Naively, to prove that a given NSRE γ0 : [0, T ] → R
n (corresponding to a control u(t)) is optimal, one 

should show that any other trajectory of the system sharing the same end-points as γ0 has energy (length) 
bigger than that of γ0. It is, however, quite difficult to describe SR trajectories with given end-points, so 
instead let us consider any SR trajectory γ1 : [0, T ] → R

n (corresponding to a control u(t) + Δu(t)) for 
which we assume only that it has the same initial point as γ0(·) and that the energy of γ1(·) is smaller than 
the energy of γ0(·). Showing that the end-point γ1(T ) is necessarily different from γ0(T ) will end the proof.

In order to compare these end-points, we extend γ0(·) and γ1(·) to a natural homotopy γs : [0, T ] → R
n

with s ∈ [0, 1], simply by considering SR trajectories corresponding to the intermediate controls u(t) +sΔu(t)
and all sharing the same initial point γ0(0). Now we shall concentrate our attention on the variation of the 
family γs(·) with respect to the parameter s:

bs(t) := ∂sγs(t) .

It is clear that the vector b0(T ) approximates at γ0(T ) the curve of end-points γs(T ) joining γ0(T ) and 
γ1(T ).

It turns out that it is easy to obtain an analytic formula for b0(T ), see Lemma 3.2, and that the geometric 
characterization of NSREs (Theorem 2.2) yields a specific behavior of this vector – it has to point “much” 
backward with respect to γ̇0(T ) – see Fig. 1. In other words, the fact that a given SR trajectory γ0(·) is a 
NSRE implies that the end-points γs(T ) of the natural homotopy joining it with γ1(·) has to wind backward 
along γ0(·) (provided that the energy of γ1(·) is not greater than that of γ0(·)). If T is sufficiently small, then 
the curve γs(T ) has “no time” to return to γ0(T ), enforcing γ0(T ) �= γ1(T ) and thus proving the optimality 
of γ0(·) and, in particular, uniqueness.
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