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In this paper we prove that for s > 3/2, all Hs solutions of the Euler–Weil–Petersson 
equation, which describes geodesics on the universal Teichmüller space under the 
Weil–Petersson metric, will remain in Hs for all time. This extends the work of 
Escher–Kolev for strong Riemannian metrics to the borderline case of H3/2 metrics. 
In addition we show that all Hs solutions of the Wunsch equation, a variation of 
the Constantin–Lax–Majda equation which also describes geodesics on the universal 
Teichmüller curve under the Velling–Kirillov metric, must blow up in finite time due 
to wave breaking, extending work of Castro–Córdoba and Bauer–Kolev–Preston. 
Finally we illustrate these phenomena numerically.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Euler–Arnold equations are PDEs that describe the evolution of a velocity field for which the Lagrangian 
flow is a geodesic in a group of smooth diffeomorphisms of a manifold, for some choice of right-invariant 
Riemannian metric; see Arnold–Khesin [1]. In the one-dimensional case, we will consider the diffeomorphism 
group of the circle S1 = R/2πZ. If the Riemannian metric is defined at the identity by

〈u, u〉r =
∫
S1

uΛ2ru dθ, (1)

where Λ2r is a symmetric, positive pseudodifferential operator of order r, we call it a Sobolev Hr metric, 
and the Euler–Arnold equation is given by
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mt + umθ + 2muθ = 0, m = Λ2ru, u = u(t, θ), u(0) = u0 ∈ C∞(S1). (2)

Special cases include the Camassa–Holm equation when r = 1 and Λ2 = 1 − ∂2
θ , or the right-invariant 

Burgers’ equation when r = 0 and Λ0 = 1 [4]. One can also allow Λ2r to be degenerate (nonnegative rather 
than positive); the best known example is when r = 1 and Λ2 = −∂2

θ , for which we get the Hunter–Saxton 
equation [12]. Here we are interested in the fractional order cases r = 1

2 and r = 3
2 (see Escher–Kolev [7]), 

which arise naturally in Teichmüller theory [10]. Both cases are critical in some sense, due to the Sobolev 
embedding being critical: for r < 1

2 Lagrangian trajectories do not depend smoothly on initial conditions, 
while for r > 3

2 conservation of energy is strong enough to ensure global existence [8]. In this paper we will 
show that all solutions for r = 1

2 blow up in finite time while for r = 3
2 all smooth solutions exist globally; 

previously only some solutions were known to blow up in the r = 1
2 case [2] and smooth solutions were only 

known to stay in H3/2 in the r = 3
2 case [10].

Specifically the cases we are interested in are

• (r = 1
2 ) the Wunsch equation [22], [2]: Λ1 = Huθ,

• and (r = 3
2 ) the Euler–Weil–Petersson equation [10]: Λ3 = −H(uθθθ + uθ),

where H is the Hilbert transform defined for periodic functions by H(einθ) = −i signneinθ. The Wunsch 
equation is a special case of the modified Constantin–Lax–Majda equation [16] which models vorticity 
growth in an ideal fluid.

When paired with the flow equation

∂η

∂t
(t, θ) = u

(
t, η(t, θ)

)
, η(0, θ) = θ, (3)

the Euler–Arnold equation (2) describes geodesics η(t) of the right-invariant Riemannian metric defined at 
the identity element by (1) on the homogeneous space Diff(S1)/G. Here G is the group generated by the 
subalgebra kerΛ of length-zero directions: for the Euler–Weil–Petersson equation we have G = PSL2(R), 
and for the Wunsch equation we have G = Rot(S1) ∼= S1.

The local existence result was obtained by Escher–Kolev [7], a strengthening of a result of Escher–Kolev–
Wunsch [9].

Theorem 1 (Escher–Kolev). Suppose Λr is either Λ1 = Huθ or Λ3 = −H(uθθθ+uθ). Then the system (2)–(3)
is a smooth ODE for η ∈ Diffs(S1)/G, for s > 3

2 and G = Rot(S1) or G = PSL2(R), respectively. Hence 
for any u0 ∈ Hs(S1), there is a unique solution η : [0, T ) → Diffs(S1)/G with η(0) = id and ηt(0) = u0, 
with the map u0 �→ η(t) depending smoothly on u0.

Loss of smoothness in the equation (2) occurs due to the fact that composition required to get u = η̇◦η−1

is not smooth in η; thus although the second-order equation for η (with u eliminated) is an ODE, the 
first-order equation (2) for u alone is not an ODE. This approach to the Euler equations was originally due 
to Ebin–Marsden [6]; for the Wunsch equation it was proved by Escher–Kolev–Wunsch [9] for large Sobolev 
indices, while for the Euler–Weil–Petersson equation it was proved by Escher–Kolev [7]. Castro–Córdoba [3]
showed that if u0 is initially odd, then solutions to the Wunsch equation blow up in finite time; the authors 
of [2] extended this result to some data without odd symmetry. For the Euler–Weil–Petersson equation, 
it was not known whether initially smooth data would remain smooth for all time. However Gay-Balmaz 
and Ratiu [10] interpreted the equation in H3/2 as a strong Riemannian metric on a certain manifold and 
concluded that the velocity field u remains in H3/2(S1) for all time. We complement this to obtain a uniform 
C1 bound, which then by bootstrapping gives uniform bounds on all Sobolev norms Hs for s > 3

2 , and thus 
in particular we show that initially smooth solutions remain smooth.
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