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A 3-form ω ∈ Λ3R7∗ is called multisymplectic if it satisfies some natural non-
degeneracy requirement. It is well known that there are 8 orbits (or types) 
of multisymplectic 3-forms on R7 under the canonical action of GL(7, R) and 
that two types are open. This leads to 8 types of global multisymplectic 
3-forms on 7-dimensional manifolds without boundary. The existence of a global 
multisymplectic 3-form of a fixed type is a classical problem in differential topology 
which is equivalent to the existence of a certain G-structure. The open types are the 
most interesting cases as they are equivalent to a G2 and G̃2-structure, respectively. 
The existence of these two structures is a well known and solved problem. In this 
article is solved (under some convenient assumptions) the problem of the existence 
of multisymplectic 3-forms of the remaining types.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Put V := R
7. There are finitely many orbits of the canonical action of GL(V) on Λ3V∗. We will call 

the orbits also types. A linear isomorphism Φ : R7 → W induces a map Φ∗ : Λ3W∗ → Λ3
R

7∗. The type 
of Φ∗ω does not depend on the choice of linear isomorphism and thus, we can define the type for any 
skew-symmetric 3-form on any 7-dimensional real vector space.

A 3-form ω ∈ Λ3V∗ is called multisymplectic if the insertion map

V → Λ2V∗, v �→ ivω := ω(v,−,−) (1)

is injective. There are (see [8] and [15]) eight types of multisympletic 3-forms and two of these types are 
open.

Let Ω be a global 3-form on a 7-dimensional manifold N without boundary and i ∈ {1, . . . , 8}. We call 
Ω a multisympletic 3-form of algebraic type i if for each x ∈ N : Ωx is a multisymplectic 3-form of type i. 
The existence of such a 3-form is a classical problem in differential topology, if Oi is the stabilizer of a fixed 
multisymplectic 3-form ωi ∈ Λ3V∗ of algebraic type i, then N admits a multisymplectic 3-form of algebraic 
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type i if, and only if it has an Oi-structure. The groups Oi were studied in [2] where they were given as 
semi-direct products of some well known Lie groups.

By the Cartan–Iwasawa–Malcev theorem (see [1, Theorem 1.2]), a connected Lie group H has a maximal 
compact subgroup and any two such subgroups are conjugated. Let us fix one such subgroup and let us 
denote it by K. By Cartan’s result, the group H has the homotopy type of K and by a standard argument 
from the obstruction theory, any H-principal bundle reduces to a K-principal bundle. Hence, the first goal is 
(see Section 3) to find a maximal compact subgroup Ki of each group Oi. Then we solve (see Section 4) the 
problem of the existence of a multisympletic 3-form of algebraic type i on a given closed 7-manifold. The 
problem is not solved completely as for some types we assume that the underlying manifold is orientable or 
simply-connected.

The most interesting and well known cases are the types 8 and 5 as O8 = G2 and O5 = G̃2. The existence 
of a G2-structure was solved in [10] and the existence of a G̃2-structure in [11].

Let us summarize the main result of this article into a single Theorem. See Section 4.1 for the definition 
of characteristic classes q(N) and q(N ; �).

Theorem 1.1. Let N be a closed and connected 7-manifold.

(1) Suppose that N is orientable, spinc and that there are e, f ∈ H2(N, Z) such that

w2(N) = ρ2(e + f) and q(N ; e + f) = −ef,

then N admits a multisymplectic 3-form of algebraic type 1.
If N is simply-connected, then the assumptions are also necessary.

(2) Suppose that N is orientable, spin and that there are e, f ∈ H2(N, Z) such that

−q(N) = e2 + f2 + 3ef,

then N admits a multisymplectic 3-form of algebraic type 2.
If N is simply-connected, then the assumptions are also necessary.

(3) N admits a multisympletic 3-form of algebraic type 3 if, and only if N is orientable and spinc.
(4) Suppose that N is orientable, spin and that there is u ∈ H4(N, Z) such that

q(M) = −4u,

then N admits a multisymplectic 3-form of algebraic type 4.
On the other hand, if N admits a multisymplectic 3-form of algebraic type 4, then N is orientable and 
spin.

(5) N admits a multisympletic 3-form of algebraic type i = 5, 6, 7, 8 if, and only if N is orientable and spin.
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1.1. Notation

We will use the following notation:



Download English Version:

https://daneshyari.com/en/article/8898308

Download Persian Version:

https://daneshyari.com/article/8898308

Daneshyari.com

https://daneshyari.com/en/article/8898308
https://daneshyari.com/article/8898308
https://daneshyari.com

