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1. Introduction

The classical isoperimetric inequality states that for Borel set Ω ∈ R
n(n ≥ 2) with finite Lebesgue 

measure |Ω|, the ball with the same measure has a lower perimeter, that is,

P (Ω) ≥ nω
1
n
n |Ω|n−1

n , (1.1)

where P (Ω) is the distributional perimeter of Ω which coincides with the classical n − 1-dimensional area of 
∂Ω if Ω has smooth boundary and ωn is the volume of unit ball in Rn. It is also well-known that equality 
holds in (1.1) if and only if Ω is a ball B in Rn. De Giorgi [14] (see also [15] for English version) proved 
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(1.1) for the first time in the general framework of sets with finite perimeter. One can find various kinds of 
proofs and different formulations of the isoperimetric inequality in [1,2,4,11,19,24] and references therein.

In the case of geometric flows, Hamilton [17] obtained an isoperimetric estimate for the Ricci flow on the 
two sphere. For complex 2-dimensional Kähler–Ricci flow, Chen and Wang [5] proved that the isoperimetric 
constant for (M, g(t)) is bounded from below by a uniform constant. Here g(t) is the solution of the Kähler–
Ricci flow (see (1.2) with θij ≡ 0). Later, Tian and Zhang [25] proved that, for all complex n-dimensional 
Kähler–Ricci flow on Fano manifolds, the isoperimetric constant for (M, g(t)) is also bounded from below 
by a uniform constant.

In this paper, we obtain a uniform estimate of lower bound on isoperimetric constant along the twisted 
Kähler–Ricci flow on Fano manifolds. To be precise, we need some notations and definitions. Let M be 
a real n(= 2m) dimensional Fano manifold with Kähler form ω0 associated to the Kähler metric g0. We 
consider the twisted Kähler–Ricci flow (see [9,18,30] and the references therein)

{
∂
∂tgij(x, t) = −Rij(x, t) + θij(x) + gij(x, t),
gij(x, 0) = (g0)ij(x),

(1.2)

where θ is a closed semi-positive (1, 1) form and

[2πc1(M)] = [ω(x, t) + θ].

Here ω(x, t) =
√
−1gij(x, t)dzi ∧ dzj associated to the Kähler metric g(x, t). For convenience, we denote

Sij(x, t) = Rij(x, t) − θij(x)

and

S(x, t) = 2
m∑

i,j=1
gji(x, t)Sij(x, t).

We know that

Proposition 1.1. For the twisted Kähler–Ricci flow (1.2) on Fano manifolds, there exist uniform positive 
constants C, κ and CS such that

(a) |S(x, t)| ≤ C,
(b) |diam(M, g(t))| ≤ C,
(c) ‖h‖C1 ≤ C, where from ∂∂-lemma, h ∈ C∞(M, R) satisfies

Sij − gij = ∂i∂jh, (1.3)

(d) Volg(t)(B(x, r, t)) ≥ κrn, for any t > 0 and r ∈ (0, diam(M, g(t))),
(e) Volg(t)(B(x, r, t)) ≤ κ−1rn, for any t > 0 and r > 0,
(f) for any f ∈ W 1,2(M),

⎛
⎝∫

M

|f | 2n
n−2 dμ(t)

⎞
⎠

n−2
n

≤ CS

⎛
⎝∫

M

[
|∇f |2g(t) + f2]dμ(t)

⎞
⎠ .
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