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A computationally challenging classical elimination theory problem is to compute 
polynomials which vanish on the set of tensors of a given rank. By moving away from 
computing polynomials via elimination theory to computing pseudowitness sets via 
numerical elimination theory, we develop computational methods for computing 
ranks and border ranks of tensors along with decompositions. More generally, we 
present our approach using joins of any collection of irreducible and nondegenerate 
projective varieties X1, . . . , Xk ⊂ PN defined over C. After computing ranks over C, 
we also explore computing real ranks. A variety of examples are included to 
demonstrate the numerical algebraic geometric approaches.

© 2017 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: alessandra.bernardi@unitn.it (A. Bernardi), ndaleo@worcester.edu (N.S. Daleo), hauenstein@nd.edu

(J.D. Hauenstein), Bernard.Mourrain@inria.fr (B. Mourrain).
URLs: http://me.unitn.it/alessandra-bernardi (A. Bernardi), http://www.worcester.edu/noah-daleo (N.S. Daleo), 

http://www.nd.edu/~jhauenst (J.D. Hauenstein), http://www-sop.inria.fr/members/Bernard.Mourrain/ (B. Mourrain).
1 This author was partially supported by Institut Mittag Leffler, the Royal Swedish Academy of Sciences (Sweden), Inria Sophia 

Antipolis Méditerranée (France), Dipartimento di Matematica, Università di Bologna, GNSAGA of INDAM (Italy), and the Simons 
Institute for the Theory of Computing (CA, USA).
2 This author was supported in part by NCSU Faculty Research and Development Fund and NSF grant DMS-1262428.
3 This author was supported in part by Army YIP W911NF-15-1-0219, Sloan Research Fellowship BR2014-110 TR14, and NSF 

grant ACI-1460032.

http://dx.doi.org/10.1016/j.difgeo.2017.07.009
0926-2245/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.difgeo.2017.07.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
mailto:alessandra.bernardi@unitn.it
mailto:ndaleo@worcester.edu
mailto:hauenstein@nd.edu
mailto:Bernard.Mourrain@inria.fr
http://me.unitn.it/alessandra-bernardi
http://www.worcester.edu/noah-daleo
http://www.nd.edu/~jhauenst
http://www-sop.inria.fr/members/Bernard.Mourrain/
http://dx.doi.org/10.1016/j.difgeo.2017.07.009


JID:DIFGEO AID:1393 /FLA [m3L; v1.221; Prn:4/08/2017; 16:05] P.2 (1-28)
2 A. Bernardi et al. / Differential Geometry and its Applications ••• (••••) •••–•••

0. Introduction

Computing tensor decompositions is a fundamental problem in numerous application areas including 
computational complexity, signal processing for telecommunications [30,40], scientific data analysis [58,75], 
electrical engineering [27], and statistics [65]. Some other applications include the complexity of matrix 
multiplication [81], the complexity problem of P versus NP [83], the study of entanglement in quantum 
physics [42], matchgates in computer science [83], the study of phylogenetic invariants [6], independent 
component analysis [29], blind identification in signal processing [74], branching structure in diffusion im-
ages [72], and other multilinear data analytic techniques in bioinformatics and spectroscopy [31].

One computational algebraic geometric approach for deciding if a decomposition can exist is to compute 
equations that define secant and join varieties (e.g., see [60, Chap. 7] for a general overview). This can 
be formulated as a classical elimination theory question which, at least in theory, can be computed us-
ing Gröbner basis methods. Moreover, the defining equations do not yield decompositions, only existential 
information. Rather than focusing on computing defining equations, this paper uses numerical algebraic 
geometry (e.g., see [12,80] for a general overview) for performing membership tests and computing decom-
positions. In particular, we use numerical elimination theory to perform the computations based on the 
methods developed in [52,53] (see also [12, Chap. 16]). This approach differs from several previous methods 
of combining numerical algebraic geometry and elimination theory, e.g., [10, § 3.3–3.4] and [78,79], in that 
these previous methods relied upon interpolation.

The general setup for this paper is as follows. Let X ⊂ P
N be an irreducible and nondegenerate projective 

variety defined over C and C(X) ⊂ C
N+1 be the affine cone of X. We let a point P be a nonzero vector 

in CN+1 while [P ] denotes the line in CN+1 passing through the origin and P , i.e., [P ] ∈ P
N is the 

projectivization of P ∈ C
N+1. The X-rank of [P ] ∈ P

N (or of P ∈ C
N+1), denoted rkX(P ), is the minimum 

r ∈ N such that P can be written as a linear combination of r elements of C(X):

P =
r∑

i=1
xi, xi ∈ C(X). (1)

Let σ0
r(X) ⊂ P

N denote the set of elements with rank at most r and, for [xi] ∈ P
N , let 〈[x1], . . . , [xr]〉

denote the linear space spanned by x1, . . . , xr. The r-th secant variety of X is

σr(X) = σ0
r(X) =

⋃
[x1],...,[xr]∈X

〈[x1], . . . , [xr]〉.

In particular, if [P ] ∈ σr(X), then [P ] is the limit of a sequence of elements of X-rank at most r. The X-border 
rank of [P ], denoted brkX(P ), is the minimum r ∈ N such that [P ] ∈ σr(X). Obviously, brkX(P ) ≤ rkX(P ).

Secant varieties are just special cases of join varieties. For irreducible and nondegenerate projective 
varieties X1, . . . , Xk, the constructible join and join variety of X1, . . . , Xk, respectively, are

J0(X1, . . . , Xk) =
⋃

[x1]∈X1,...,[xk]∈Xk

〈[x1], . . . , [xk]〉 and J(X1, . . . , Xk) = J0(X1, . . . , Xk). (2)

Clearly, σ0
r(X) = J0(X, . . . ,X︸ ︷︷ ︸

r

) and σr(X) = J(X, . . . ,X︸ ︷︷ ︸
r

).

As mentioned above, one can test, in principle, if an element belongs to a certain join variety (or if it 
has certain X-border rank) by computing defining equations for the join variety (or the secant variety, 
respectively). Unfortunately, finding defining equations for secant and join varieties is generally a very 
difficult elimination problem which is far from being well understood at this time.

The following summarizes the remaining sections of this paper.
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