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Valiant’s famous determinant versus permanent problem is the flagship problem in 
algebraic complexity theory. Mulmuley and Sohoni (2001, 2008) [23,24] introduced 
geometric complexity theory, an approach to study this and related problems via 
algebraic geometry and representation theory. Their approach works by multiplying 
the permanent polynomial with a high power of a linear form (a process called 
padding) and then comparing the orbit closures of the determinant and the padded 
permanent. This padding was recently used heavily to show negative results for the 
method of shifted partial derivatives (Efremenko et al., 2016 [6]) and for geometric 
complexity theory (Ikenmeyer and Panova, 2016 [17] and Bürgisser et al., 2016 [3]), 
in which occurrence obstructions were ruled out to be able to prove superpolynomial 
complexity lower bounds. Following a classical homogenization result of Nisan 
(1991) [25] we replace the determinant in geometric complexity theory with the trace 
of a symbolic matrix power. This gives an equivalent but much cleaner homogeneous 
formulation of geometric complexity theory in which the padding is removed. This 
radically changes the representation theoretic questions involved to prove complexity 
lower bounds. We prove that in this homogeneous formulation there are no orbit 
occurrence obstructions that prove even superlinear lower bounds on the complexity 
of the permanent.
Interestingly—in contrast to the determinant—the trace of a symbolic matrix power 
is not uniquely determined by its stabilizer.

© 2017 Elsevier B.V. All rights reserved.

1. Statement of the result

Let perm :=
∑

σ∈Sm

∏m
i=1 Xi,σ(i) denote the m × m permanent polynomial and let Powm

n := tr(Xm)
denote the trace of the mth power of an n × n matrix X = (Xi,j) of variables. The coordinate rings of the 
orbits and orbit closures C[GLn2Powm

n ] and C[GLn2perm] are GLn2-representations. Let λ be an isomorphism 

* Corresponding author.
E-mail addresses: fulges@math.tamu.edu (F. Gesmundo), cikenmey@mpi-inf.mpg.de (C. Ikenmeyer), 

panova@math.upenn.edu (G. Panova).

http://dx.doi.org/10.1016/j.difgeo.2017.07.001
0926-2245/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.difgeo.2017.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
mailto:fulges@math.tamu.edu
mailto:cikenmey@mpi-inf.mpg.de
mailto:panova@math.upenn.edu
http://dx.doi.org/10.1016/j.difgeo.2017.07.001


JID:DIFGEO AID:1385 /FLA [m3L; v1.221; Prn:25/07/2017; 16:05] P.2 (1-22)
2 F. Gesmundo et al. / Differential Geometry and its Applications ••• (••••) •••–•••

type of an irreducible GLn2-representation. In this paper we prove that if n ≥ m + 2 ≥ 12 and λ occurs in 
C[GLn2perm], then λ also occurs in C[GLn2Powm

n ], see Theorem 2.12 below.

2. Introduction

Valiant’s famous determinant versus permanent problem is a major open problem in computational 
complexity theory. It can be stated as follows, see Conjecture 2.1: For a polynomial p in any number of 
variables let the determinantal complexity dc(p) denote the smallest n ∈ N such that p can be written as 
the determinant p = det(A) of an n × n matrix A whose entries are affine linear forms in the variables.

Throughout the paper we fix our ground field to be the complex numbers C. The permanent is of interest 
in combinatorics and theoretical physics, but our main interest stems from the fact that it is complete for 
the complexity class VNP (although the arguments in this paper remain valid if the permanent is replaced 
by any other VNP-complete function, mutatis mutandis). Valiant famously posed the following conjecture.

Conjecture 2.1. The sequence dc(perm) grows superpolynomially.

Valiant [31] proved that Conjecture 2.1 implies the separation VPe � VNP of algebraic complexity 
classes, which was later refined in [30], see also [21]: Conjecture 2.1 is equivalent to the separation VPs �
VNP. Many polynomially equivalent formulations for the determinantal complexity exist. For example 
dc(p) is polynomially equivalent to the smallest size of a skew circuit computing p, or the smallest size of a 
weakly skew circuit computing p, or the smallest size of an algebraic branching program computing p.

2.1. Preliminaries and the padded setting

Geometric complexity theory was introduced by Mulmuley and Sohoni [23,24] to resolve Conjecture 2.1
and related conjectures as follows. For n > m define the padded permanent pernm := (Xn,n)n−mperm, 
which is homogeneous of degree n in m2 + 1 variables. Let An denote the vector space of homogeneous 
degree n polynomials in the n2 variables Xi,j . Clearly pernm ∈ An. Moreover, detn ∈ An, where detn :=∑

σ∈Sn
sgn(σ) 

∏n
i=1 Xi,σ(i) is the determinant polynomial. The group GLn2 of invertible n2 × n2 matrices 

acts canonically on An by replacing variables with homogeneous linear forms. Let GLn2detn := {g ·detn | g ∈
GLn2} be the orbit of the determinant and analogously let GLn2pernm be the orbit of the padded permanent. 
Let GLn2detn ⊆ An and GLn2pernm ⊆ An denote the closures of the respective orbits in An. Here Euclidean 
closure and Zariski closure coincide [19, II.2.2 c & AI.7.2 Folgerung], i.e., both orbit closures are affine 
subvarieties of An. Mulmuley and Sohoni proposed the following way to find lower bounds on dc(perm).

Proposition 2.2. If GLn2pernm � GLn2detn, then dc(perm) > n.

We call Proposition 2.2 the padded setting. To prove lower bounds on dc(perm) Mulmuley and Sohoni 
[23,24] suggested to study the representation theory of the coordinate rings of the orbits and orbit closures 
and use so-called occurrence obstructions. To define occurrence obstructions we now discuss the representa-
tion theory of the coordinate rings.

Recall that An is a complex vector space of dimension 
(
n2+n−1

n

)
. Let C[An] denote its coordinate ring, 

i.e., the ring of polynomials in 
(
n2+n−1

n

)
variables. The group GLn2 acts linearly in a canonical way on each 

homogeneous degree d component C[An]d by the canonical pullback (gf)(p) := f(g−1p), for all f ∈ C[An]d, 
g ∈ GLn2 , p ∈ An. Since the group GLn2 is reductive, the finite dimensional GLn2-representation C[An]d splits 
into a direct sum representations: C[An]d =

⊕
i Vi, where each Vi is an irreducible GLn2-representation, 

i.e., a vector space with no nontrivial linear subspaces that are invariant under the group action. Two 
irreducible GLn2-representations Vi and Vj are called isomorphic if there exists a GLn2-equivariant vector 
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