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We initiate a study of determinantal representations with symmetry. We show 
that Grenet’s determinantal representation for the permanent is optimal among 
determinantal representations equivariant with respect to left multiplication 
by permutation and diagonal matrices (roughly half the symmetry group of 
the permanent). We introduce a restricted model of computation, equivariant 
determinantal complexity, and prove an exponential separation of the permanent 
and the determinant in this model. This is the first exponential separation of the 
permanent from the determinant in any restricted model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Perhaps the most studied polynomial of all is the determinant:

detn(x) :=
∑

σ∈Sn

sgn(σ)x1
σ(1)x

2
σ(2) · · · xn

σ(n), (1)

a homogeneous polynomial of degree n in n2 variables. Here Sn denotes the group of permutations on n
elements and sgn(σ) denotes the sign of the permutation σ.

Despite its formula with n! terms, detn can be evaluated quickly, e.g., using Gaussian elimination, which 
exploits the large symmetry group of the determinant, e.g., detn(x) = detn(AxB−1) for any n ×n matrices 
A, B with determinant equal to one.

We will work exclusively over the complex numbers and with homogeneous polynomials, the latter re-
striction only for convenience. L. Valiant showed in [26] that given a homogeneous polynomial P (y) in M
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variables, there exists an n and an affine linear map Ã : CM → Cn2 such that P = detn ◦Ã. Such Ã is called 
a determinantal representation of P . When M = m2 and P is the permanent polynomial

permm(y) :=
∑

σ∈Sm

y1
σ(1)y

2
σ(2) · · · ymσ(m), (2)

he showed that one can take n = O(2m). As an algebraic analog of the P �= NP conjecture, he also 
conjectured that one cannot do much better:

Conjecture 1.1 (Valiant [27]). Let n(m) be a function of m such that there exist affine linear maps Ãm :
Cm2 → Cn(m)2 satisfying

permm = detn(m) ◦Ãm. (3)

Then n(m) grows faster than any polynomial in m.

To measure progress towards Conjecture 1.1, define dc(permm) to be the smallest n(m) such that there 
exists Ãm satisfying (3). The conjecture is that dc(permm) grows faster than any polynomial in m. Lower 
bounds on dc(permm) are: dc(permm) > m (Marcus and Minc [16]), dc(permm) > 1.06m (Von zur Gathen 
[29]), dc(permm) >

√
2m − O(

√
m) (Meshulam, reported in [29], and Cai [5]), with the current world 

record dc(permm) ≥ m2

2 [19] by Mignon and the second author. (Over R, Yabe recently showed that 
dcR(permm) ≥ m2 − 2m + 2 [30], and in [6] Cai, Chen and Li extended the m

2

2 bound to arbitrary fields.)
Inspired by Geometric Complexity Theory (GCT) [20], we focus on the symmetries of detn and permm. 

Let V be a complex vector space of dimension M , let GL(V ) denote the group of invertible linear maps 
V → V . For P ∈ SmV ∗, a homogeneous polynomial of degree m on V , let

GP : = {g ∈ GL(V ) | P (g−1y) = P (y) ∀y ∈ V }

GP : = {g ∈ GL(V ) | P (g−1y) ∈ C∗P (y) ∀y ∈ V }

denote the symmetry group (resp. projective symmetry group) of P . The function χP : GP → C∗ defined 
by the equality P (g−1y) = χP (g)P (y) is group homomorphism called the character of P . For exam-
ple Gdetn 	 (GLn × GLn)/C∗ � Z2 [9], where the GLn × GLn invariance comes from detn(AxB−1) =
(detn A detn B−1) detn(x) and the Z2 is because detn(x) = detn(xT ) where xT is the transpose of the ma-
trix x. Write τ : GLn × GLn → GLn2 for the map (A, B) 
→ {x 
→ AxB−1}. The character χdetn satisfies 
χdetn ◦ τ(A, B) = det(A) det(B)−1.

As observed in [20], the permanent (resp. determinant) is characterized by its symmetries and its degree 
in the sense that any polynomial P ∈ SmCm2∗ with a symmetry group GP such that GP ⊇ Gpermm

(resp. 
GP ⊇ Gdetm) is a scalar multiple of the permanent (resp. determinant). This property is the cornerstone 
of GCT. The program outlined in [20,21] is an approach to Valiant’s conjecture based on the functions on 
GLn2 that respect the symmetry group Gdetn , i.e., are invariant under the action of Gdetn .

The interest in considering GP instead of GP is that if P is characterized by GP among homogeneous 
polynomials of the same degree, then it is characterized by the pair (GP , χP ) among all polynomials. This 
will be useful, since a priori, detn ◦Ã need not be homogeneous.

Guided by the principles of GCT, we ask:

What are the Ã that respect the symmetry group of the permanent?
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