
Differential Geometry and its Applications 50 (2017) 116–125

Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Gauss–Bonnet formulae and rotational integrals in constant 

curvature spaces

S. Barahona a, X. Gual-Arnau b,∗

a Departament de Matemàtiques, Universitat Jaume I, 12071-Castelló, Spain
b Departament de Matemàtiques, Institute of New Imaging Technologies, Universitat Jaume I,
12071-Castelló, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 November 2015
Received in revised form 16 May 
2016
Available online xxxx
Communicated by F. Pedit

MSC:
53C65

Keywords:
Gauss–Bonnet formula
Integral of mean curvature
Intrinsic volume
Rotational integral formulas
Space form

We obtain generalizations of the main result in [10], and then provide geometric 
interpretations of linear combinations of the mean curvature integrals that appear in 
the Gauss–Bonnet formula for hypersurfaces in space forms Mn

λ . Then, we combine 
these results with classical Morse theory to obtain new rotational integral formulae 
for the k-th mean curvature integrals of a hypersurface in Mn

λ .
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1. Introduction

This paper presents some formulas for the mean curvature integrals of a closed hypersurface in a space 
of constant curvature λ. The formulas involve the average of certain quantities (measurement functions) 
evaluated on the intersection of the hypersurface with a random geodesic subspace by a fixed point. Classical 
results in integral geometry give similar formulas where the random subspaces are not restricted to contain 
a fixed point. Recently, with a view towards stereological applications (e.g. in microscopy), there has been 
interest in obtaining such formulas where the subspaces go through a fixed point (see e.g. [1,3,4,11,12]). 
Most results concern the Euclidean case λ = 0, but the case λ �= 0 is also of interest and has been treated 
in references [3–6] of the paper. The results in this paper are a natural continuation of those.

Let Mn
λ denote a simply connected Riemannian manifold of constant sectional curvature λ. Further, let 

Ln
r denote a r-plane (r ≤ n) namely a totally geodesic submanifold of dimension r in Mn

λ , and let dLn
r denote 
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the corresponding density, invariant under the group of Euclidean and non-Euclidean motions. A r-plane 
through a fixed point O in Mn

λ , and its invariant density, are denoted by Ln
r[0] and dLn

r[0], respectively [9].
In [4] a new expression for the density of r-planes in Mn

λ has been obtained in terms of the density 
dLn

r+1[0], of the density dLr+1
r of r-planes in Ln

r+1[0] and the distance ρ from O to Lr+1
r . Thus, an invariant 

r-plane in Mn
λ may be generated by taking first an isotropic (r+1)-plane through a fixed point O and then 

an invariant r-plane within this (r + 1)-plane, weighted by a function of ρ.
This construction, called the invariator principle in Mn

λ ([11]), has opened the way to solve rotational 
integral equations for different quantities as the volume of a k-dimensional submanifold in Mn

λ [4], the k-th 
mean curvature integrals or k-th intrinsic volumes ([6] and [1], and different curvature measures ([11] for 
λ = 0)). The solutions of these equations allow to express these quantities as the integral of some functionals 
defined in sections produced by isotropic planes through a fixed point. Moreover, in [11], the authors, using 
classical Morse theory, rewrite the volume of compact submanifolds in Rn of dimension n − r, in terms 
of critical values of the sectioned object with (r + 1)-planes; and in [5] related generalizations valid for 
submanifolds in space forms of constant curvature are obtained.

If we compare some classical formulas in integral geometry, obtained by sections which do not necessarily 
contain a fixed point of reference, with rotational formulas in spaces of constant curvature; we obtain the 
following equivalences. In [4] rotational formulae of Eq. (14.69) of [9] are obtained. In [5] we give a Morse 
type representation of these formulas. In [6] rotational formulae of Eq. (14.78) of [9] are obtained; then, 
the mean curvature integrals of the sectioned domain appear in the measurement functions. In [3], we give 
stereological versions in R3 of all the preceding integral formulae. In this paper we give rotational formulae 
for the mean curvature integrals, from the Gauss–Bonnet formula in non-Euclidean spaces (Eq. (17.21) and 
Eq. (17.22) of [9]) and Eq. (17) of this paper; therefore, the Euler characteristic of the sectioned domain 
appears in the measurement functions, and we give a Morse type representation of these formulas.

On the other hand, in [10] it is proved that the Gauss–Bonnet defect of a hypersurface in Mn
λ is the 

measure of planes Ln
n−2 meeting it, counted with multiplicity. From this result an integral-geometric proof 

of the Gauss–Bonnet theorem for hypersurfaces in Mn
λ is given.

The purpose of this paper is twofold: to obtain generalizations of the main result in [10], following a 
completely different route; and to combine these results with classical Morse theory to obtain new rotational 
integral formulae for the k-th mean curvature integrals of a hypersurface in Mn

λ .

2. The Gauss–Bonnet theorem in Mn
λ

Let Q ⊂ Mn
λ be a compact domain with smooth boundary S = ∂Q. Let V denote the volume of Q, F the 

(n − 1)-surface area of S, χ(Q) the Euler–Poincaré characteristic of Q, and Mi the i-th integral of mean 
curvature of S. The Gauss–Bonnet formula for S states that [9]

cn−1Mn−1 + λcn−3Mn−3 + · · · + λ
n−2

2 c1M1 + λ
n
2 V = 1

2Onχ(Q), (1)

for n even, where Ok = vol(Sk) (surface area of the k-dimensional unit sphere), and

cn−1Mn−1 + λcn−3Mn−3 + · · · + λ
n−3

2 c2M2 + λ
n−1

2 c0F = 1
2Onχ(Q), (2)

for n odd, where

ch =
(
n− 1
h

)
On

OhOn−1−h
. (3)

If n is odd, we can use the equality 2χ(Q) = χ(S), and for λ = 0, in any case, we obtain Mn−1 =
On−1χ(Q).
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