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By exploiting biconformal transformations of the metric we construct biharmonic 
functions and mappings from Riemannian manifolds. Isoparametric functions, 
characterized by the property that their level sets are parallel and of constant mean 
curvature, play an important role in the construction of examples. We extend our 
method to include triconformal deformations of the metrics with respect to the Hopf 
map from R4 to R3, which, in addition to a biconformal deformation of the domain, 
incorporates a conformal deformation of the codomain.
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1. Introduction

A biharmonic map is a mapping ϕ : (Mm, g) → (Nn, h) between Riemannian manifolds which is critical 
for the bienergy functional (see below):

∫
Mm

|τϕ|2dvg ,

where τϕ is the tension field of ϕ. The origins of this functional can be traced back to Euler’s elastica, 
important in elasticity theory, which arise as extrema of the total squared curvature functional for a curve 
with the constraint that its length be fixed [10]. More generally the functional without constraint was 
introduced for curves in arbitrary Riemannian manifolds by L. Noakes, G. Heinzinger and B. Paden; in this 
case extrema are known as Riemannian cubics [14]. Independently, biharmonic curves in surfaces and in 
the Heisenberg group have been investigated by R. Caddeo, S. Montaldo and P. Piu [6] and R. Caddeo, 
C. Oniciuc and P. Piu [7], respectively. In recent years, biharmonic maps have been studied from more 
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general domains and we refer the reader to [12] for a short survey. The corresponding Euler–Lagrange 
equations are a 4th order elliptic system. For curves in the plane these can be integrated and, as made 
explicit by Euler, their solutions can be expressed in terms of elliptic functions. For more general domains 
and codomains the Euler–Lagrange equations are difficult to deal with.

By definition, a harmonic map has τϕ ≡ 0 which is therefore automatically biharmonic; so one is interested 
in finding biharmonic maps which are non-harmonic, so-called proper biharmonic maps. One approach is to 
fix a map ϕ : (Mm, g) → (Nn, h) between Riemannian manifolds and to deform the metric g on the domain 
or the metric h on the codomain in order to render the map biharmonic. This idea was first considered 
in [2], where it was shown that if g̃ = e2γg is a conformally related metric (γ : Mm → R a smooth function) 
and ϕ is harmonic, then the deformed metric g̃ renders ϕ biharmonic if and only if the gradient ∇γ satisfies 
a 2nd order partial differential equation. Thus the 4th order system is now equivalent to two second order 
systems. In general these are still difficult to solve, but by taking ϕ to be particularly simple, for example 
the identity map, one can construct proper biharmonic maps.

Conformal deformations were also considered by the third author [15,16] who characterized conformal 
biharmonic maps in terms of partial differential equations, once more exploiting conformal deformations 
of the codomain. Equations characterizing semi-conformal biharmonic maps were obtained by the authors 
in [3].

In the case that ϕ is a submersion, then at each point x ∈ Mm, the tangent space has an orthogonal 
decomposition TxM

m = Hx ⊕ Vx as a direct sum of its vertical (tangent to the fibres of ϕ) and horizontal 
spaces. The metric g also decomposes into a sum g = gH + gV , where gV is defined by gV |V = g|V and 
gV |H = 0. A biconformal deformation of g is a metric of the form:

g̃ = σ−2gH + ρ−2gV

where σ and ρ are smooth positive functions on Mn. If in addition we deform the metric on the codomain to 
h̃ = ν−2h, we call the deformation triconformal. Such a deformation preserves the orthogonal decomposition 
of TMm into horizontal and vertical subspaces, but dilates these spaces by different amounts. If σ ≡ ρ, then 
a biconformal deformation is conformal.

In his thesis, L. Danielo used biconformal deformations to construct new examples of Einstein metrics in 
dimension 4 [8]. The deformations exploited were with respect to standard projections and the Hopf maps. 
In this article, we show how to construct proper biharmonic maps from both biconformal and triconformal 
deformations. For a function ϕ : Mm → R, the biharmonic map equations are simply the square of the 
Laplace–Beltrami operator: (Δ)2ϕ = Δ(Δϕ) = 0. In the first instance, we exploit isoparametric functions, 
characterized by the property that their level sets are parallel and of constant mean curvature, in order to 
construct biharmonic functions. A connection with isoparametric functions was also found in [3], where it 
was shown that for dimension m �= 4, any biharmonic conformal mapping of Mm has dilation which is an 
isoparametric function.

In Theorem 4, we give a natural generalization of this approach to semi-conformal maps between Rieman-
nian manifolds with basic tension field and basic dilation. By considering projections we give examples of 
proper biharmonic maps on complete non-compact Riemannian manifolds. We are particularly interested in 
entire examples because of the Liouville type-theorems for biharmonic maps obtained in the references [4,13].

By an application of the Weitzenböck formula, it was shown by G.Y. Jiang that any biharmonic map 
from a compact manifold without boundary into a manifold of non-positive sectional curvature must be 
harmonic [11]. However, there is no evident reason why there should not exist a proper biharmonic sub-
mersion between compact manifolds of positive curvature. In spite of this, there are no known examples 
when the dimension of the domain is ≥ 2. One strategy might be to begin with say the Hopf map from 
R4 to R3 and to conformally deform the metric on the codomain into a compact metric such as a spherical 
one. A semi-conformal harmonic map from a deformed S4 into Euclidean S3 was constructed in this way 
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