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Determining Projection Constants of Univariate Polynomial Spaces

Simon Foucart∗ (Texas A&M University) and Jean B. Lasserre† (University of Toulouse)

Abstract

The long-standing problem of minimal projections is addressed from a computational point

of view. Techniques to determine bounds on the projection constants of univariate polynomial

spaces are presented. The upper bound, produced by a linear program, and the lower bound,

produced by a semidefinite program exploiting the method of moments, are often close enough to

deduce the projection constant with reasonable accuracy. The implementation of these programs

makes it possible to find the projection constant of several three-dimensional spaces with five

digits of accuracy, as well as the projection constants of the spaces of cubic, quartic, and quintic

polynomials with four digits of accuracy. Beliefs about uniqueness and shape-preservation of

minimal projections are contested along the way.
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1 Introduction

The problem of minimal projections has attracted the attention of approximation theorists for

about half a century. The survey of Cheney and Price [3] still provides a fine account on the topic.

The fact that the Fourier projection is uniquely minimal from C(T) onto the space of trigonometric

polynomials of degree at most d, derived from Berman–Marcinkiewicz formula, undoubtedly stands

as a highlight of the subject, see [12, 4]. But when the focus is put on algebraic rather than

trigonometric polynomials, the situation becomes dramatically more complicated. Besides the

trivial cases of degree d = 0 and d = 1, only the case d = 2 has been resolved, albeit at the cost of

considerable efforts deployed by Chalmers and Metcalf [2]. In fact, traditional analyses may have
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