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PERIODIC PERTURBATIONS OF UNBOUNDED

JACOBI MATRICES III: THE SOFT EDGE REGIME

GRZEGORZ ŚWIDERSKI

Abstract. We present pretty detailed spectral analysis of Jacobi matrices with periodically
modulated entries in the case when 0 lies on the soft edge of the spectrum of the corresponding
periodic Jacobi matrix. In particular, we show that the studied operators are always self-adjoint
irrespective of the modulated sequence. Moreover, if the growth of the modulated sequence is
superlinear, then the spectrum of the considered operators is always discrete. Finally, we study
regular perturbations of this class in the linear and the sublinear cases. We impose conditions
assuring that the spectrum is absolute continuous on some regions of the real line. A constructive
formula for the density in terms of Turán determinants is also provided.

1. Introduction

Consider two sequences a = (an : n ≥ 0) and b = (bn : n ≥ 0) such that for every n ≥ 0 one
has an > 0 and bn ∈ R. Then one defines the symmetric tridiagonal matrix by the formula

A =




b0 a0 0 0 . . .
a0 b1 a1 0 . . .
0 a1 b2 a2 . . .
0 0 a2 b3
...

...
...

. . .



.

The action of A on any sequence is defined by the formal matrix multiplication. Let the operator
A be the restriction of A to `2, i.e. Dom(A) = {x ∈ `2 : Ax ∈ `2} and Ax = Ax for x ∈ Dom(A),
where

〈x, y〉`2 =
∞∑

n=0

xnyn, `2 = {x ∈ CN : 〈x, x〉`2 <∞}.

The operator A is called Jacobi matrix. It is self-adjoint provided Carleman condition is satisfied,
i.e.

(1)

∞∑

n=0

1

an
=∞.

A generalised eigenvector u associated with x ∈ R is any sequence satisfying the recurrence
relation

(2) an−1un−1 + bnun + anun+1 = xun (n ≥ 1).
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