

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 225 (2018) 176-190

www.elsevier.com/locate/jat

Full Length Article

Greedy algorithm with gaps T. Oikhberg

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

Received 15 February 2017; received in revised form 4 August 2017; accepted 9 October 2017 Available online 19 October 2017

Communicated by Josef Dick

Abstract

We generalize the well-known greedy approximation algorithm, by allowing gaps in the approximating sequence. We give examples of bases which are "quasi-greedy with gaps," in spite of failing to be quasi-greedy in the usual sense. However, we also show that for some classical bases (such as the normalized Haar basis in L_1 , and the trigonometric basis in L_p for $p \neq 2$), the greedy algorithm may diverge, even if gaps are introduced into the approximating sequence.

© 2017 Elsevier Inc. All rights reserved.

Keywords: Greedy algorithm; Basis

1. Introduction

We introduce and investigate a generalization of the well-known Thresholding Greedy Algorithm. First we need to fix some notation. If $(e_i, e_i^*)_{i \in I} \subset X \times X^*$ is a biorthogonal system, and A is a finite subset of \mathbb{N} , we write $Ax = \sum_{i \in A} \langle e_i^*, x \rangle e_i$, and $A^c x = x - Ax$. By default we assume that all our biorthogonal systems are infinite (that is, X is infinite dimensional), complete $(\overline{\text{span}[e_i : i \in I]} = X)$ and total $(\overline{\text{span}[e_i^* : i \in I]}^{\text{weak}*} = X^*)$, and further, $\sup_i \max\{||e_i||, ||e_i^*||\} < \infty$ (the systems are *semi-normalized*). We would sometimes refer to $(e_i)_{i \in I}$ as a *basis*. The *support* of x (supp x) is the set $\{i : \langle e_i^*, x \rangle \neq 0\}$. By our assumption, elements with finite support are dense in X.

https://doi.org/10.1016/j.jat.2017.10.006

E-mail address: oikhberg@illinois.edu.

^{0021-9045/© 2017} Elsevier Inc. All rights reserved.

We say that a set $A \subset I$ is a *t*-greedy set for $x \in X$ (here $t \in (0, 1]$) if

$$\inf_{i \in A} \left| \langle e_i^*, x \rangle \right| \ge t \sup_{i \notin A} \left| \langle e_i^*, x \rangle \right|$$

(if x has infinite support, then such a set A is necessarily finite, since, for every $\varepsilon > 0$, the set $\{i : |\langle e_i^*, x \rangle| > \varepsilon\}$ is finite, see [5]). A *t*-greedy projection of x $\mathbf{G}_m^t(x)$ is Ax, where A is a *t*-greedy set of cardinality *m* (such a projection need not be unique). When t = 1, we simply talk about greedy sets, and greedy projections \mathbf{G}_m .

Suppose $\mathbf{n} = (n_1 < n_2 < \cdots)$ is an increasing sequence of positive integers, and $0 < t \le 1$. The basis (e_i) is \mathbf{n} -quasi-greedy with parameter t $(\mathbf{n}$ -t-QG for short) if $\lim_i \mathbf{G}_{n_i}^t x = x$ for any $x \in X$, and any choice of t-greedy projections $\mathbf{G}_{n_i}^t x$. When t = 1, we use the term \mathbf{n} -quasi-greedy $(\mathbf{n}$ -QG). When $\mathbf{n} = \mathbb{N}$, we recover the usual notion of a basis being t-quasi-greedy, or quasi-greedy for t = 1 (we use the acronyms t-QG and QG).

This paper is structured as follows. In Section 2, we obtain a criterion for a basis being \mathbf{n} -t-QG (similar to the criterion for the quasi-greediness of a basis from [18]). We also show that any basis which is \mathbf{n} -QG with constant 1 must be 1-suppression unconditional. Examples of \mathbf{n} -QG bases which are not QG are given in Section 3. In Section 4 we show that, if a set \mathbf{n} is "large enough" (more precisely, if it "almost" forms an additive basis in \mathbb{N}), then any \mathbf{n} -QG basis is automatically QG. In Section 5, we show that certain "classical" bases (the Haar basis in L_1 , and the trigonometric basis in a weighted L_p space) are not \mathbf{n} -QG, for any sequence \mathbf{n} .

Throughout the paper, we use standard facts and notation from Banach spaces and approximation theory. We refer the reader to e.g. [15–17] for the necessary background. For a normed space *X*, we denote by $\mathbf{B}(X) = \{x \in X : ||x|| \le 1\}$ its closed unit ball. We write " $x \preceq y$ " (" $x \succeq y$ ", " $x \sim y$ ") as a shorthand for "there exists c > 0 so that $x/y \le c$ " (resp. $c^{-1} \le x/y$, $c^{-1} \le x/y \le c$). For a collection of vectors $(e_i)_{i \in I}$, and a finite set $A \subset I$, we let $\mathbf{1}_A = \sum_{i \in A} e_i$. More generally, for $\varepsilon_i = \pm 1$, we set $\mathbf{1}_{\varepsilon A} = \sum_{i \in A} \varepsilon_i e_i$.

Remark 1.1. One can define **n**-greedy, and **n**-almost greedy bases, in the manner similar to the definition of **n**-QG bases. More precisely, suppose $(e_i, e_i^*)_{i \in I} \subset X \times X^*$ is a biorthogonal system. For $x \in X$, we can define

$$\sigma_m(x) = \inf_{|\text{supp } y| \le m} ||x - y|| \text{ and } \tilde{\sigma}_m(x) = \inf_{|A| \le m} ||x - Ax||.$$

The above basis is said to be **n**-greedy (resp. **n**-almost greedy) if there exists an absolute constant C > 0 so that, for any x, and any $n \in \mathbf{n}$, we have $||x - \mathbf{G}_n x|| \le C\sigma_n(x)$, resp. $||x - \mathbf{G}_n x|| \le C\tilde{\sigma}_n(x)$ (that is, the greedy approximation is "almost optimal"). However, such bases are necessarily greedy, resp. almost greedy, when I is infinite.

We consider the greedy case, as the almost greedy one is handled similarly. Suppose (e_i) is **n**-greedy, with constant *C*. We have to show that, for any *x*, and any greedy set *A*, we have $||x - Ax|| \le C\sigma_m(x)$, where m = |A|. For $\varepsilon > 0$ pick $y \in X$ so that |supp(y)| = m and $||x - y|| < \sigma_m(x) + \varepsilon$.

Pick $n \in \mathbf{n} \cap [m, \infty)$. If n = m, we are done. Otherwise, by a "small perturbation argument", we can assume that x has finite support. Find a set B of cardinality n - m, disjoint from supp $x \cup$ supp y. Set $x' = x + \sum_{k \in B} re_i$, where $r > \max_i |\langle e_i^*, x \rangle|$. Then $A \cup B$ is a greedy set (of cardinality n) for x', and $x' - (A \cup B)x' = x - Ax$. However, x' - (Bx' + y) = x - y, hence $||x - y|| \ge \sigma_n(x')$. Thus,

$$\|x - Ax\| = \|x' - (A \cup B)x'\| \le C\sigma_n(x') \le C\|x - y\| \le C(\sigma_m(x) + \varepsilon).$$

As ε can be arbitrarily small, we are done.

Download English Version:

https://daneshyari.com/en/article/8898470

Download Persian Version:

https://daneshyari.com/article/8898470

Daneshyari.com