

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 225 (2018) 209-223

www.elsevier.com/locate/jat

Full Length Article

On nuclearity of embeddings between Besov spaces

Fernando Cobos^{a,*}, Óscar Domínguez^b, Thomas Kühn^c

^a Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain

^b Department of Mathematics, Center for Mathematics of the University of Coimbra (CMUC), 3001-454 Coimbra, Portugal

^c Mathematisches Institut, Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany

Received 9 May 2017; received in revised form 19 September 2017; accepted 27 October 2017 Available online 7 November 2017

Communicated by Winfried Sickel

Abstract

Let $B_{p,q}^{s,\alpha}(\Omega)$ be the Besov space with classical smoothness *s* and additional logarithmic smoothness of order α on a bounded Lipschitz domain Ω in \mathbb{R}^d . For $s_1, s_2 \in \mathbb{R}$, $1 \leq p_1, p_2, q_1, q_2 \leq \infty$ and $s_1 - s_2 = d - d(1/p_2 - 1/p_1)_+$, we show a sufficient condition on q_1, q_2 for nuclearity of embedding $B_{p_1,q_1}^{s_1,\alpha_1}(\Omega) \hookrightarrow B_{p_2,q_2}^{s_2,\alpha_2}(\Omega)$. We also show that the condition is necessary in a wide range of parameters. © 2017 Elsevier Inc. All rights reserved.

MSC: 46E35; 47B10

Keywords: Besov spaces; Nuclear embeddings; Generalized smoothness

1. Introduction

Let Ω be a bounded Lipschitz domain in \mathbb{R}^d . Let $s_1, s_2 \in \mathbb{R}$ and $1 < p_1, p_2, q_1, q_2 < \infty$. It follows from a result of Pietsch [15] (see also [18] and [21, p. 354]) that the embedding $B_{p_1,q_1}^{s_1}(\Omega) \hookrightarrow B_{p_2,q_2}^{s_2}(\Omega)$ is nuclear if $s_1 - s_2 > d - d(1/p_2 - 1/p_1)_+$, and it is not nuclear if $s_1 - s_2 < d - d(1/p_2 - 1/p_1)_+$. Here $a_+ = \max\{a, 0\}$. The limiting case $s_1 - s_2 = d - d(1/p_2 - 1/p_1)_+$.

* Corresponding author.

https://doi.org/10.1016/j.jat.2017.10.009

E-mail addresses: cobos@mat.ucm.es (F. Cobos), oscar.dominguez@mat.uc.pt (Ó. Domínguez), kuehn@math.uni-leipzig.de (T. Kühn).

^{0021-9045/© 2017} Elsevier Inc. All rights reserved.

 $1/p_1$)₊ has been considered very recently by Edmunds, Gurka and Lang [7] and Triebel [27]. As one can see in [27], the embedding is not nuclear if $s_1 - s_2 = d - d(1/p_2 - 1/p_1)_+$. Note that the conditions above are independent of the parameters q_1 and q_2 .

The aim of this paper is to investigate the role of q_1, q_2 in nuclearity of embeddings between Besov spaces. Having in mind the results on entropy numbers of limiting embeddings of Leopold [13] and Cobos and Kühn [4], we work with Besov spaces $B_{p,q}^{s,\alpha}(\Omega)$ which add logarithmic smoothness with exponent α to the classical smoothness s. It holds $B_{p,q}^{s,\alpha}(\Omega) \hookrightarrow$ $B_{p,q}^s(\Omega)$ for $\alpha > 0$. We show a sufficient condition in terms of q_1, q_2 for nuclearity of embeddings $B_{p_1,q_1}^{s_1,\alpha_1}(\Omega) \hookrightarrow B_{p_2,q_2}^{s_2,\alpha_2}(\Omega)$ when $s_1 - s_2 = d - d(1/p_2 - 1/p_1)_+$. Furthermore, we prove that the condition is necessary for nuclearity in a wide range of parameters.

Our results not only point out the role of parameters q_1, q_2 in nuclearity of embeddings, but also apply to many embeddings $B_{p_1,q_1}^{s_1}(\Omega) \hookrightarrow B_{p_2,q_2}^{s_2}(\Omega)$ when $s_1 - s_2 = d - d(1/p_2 - 1/p_1)_+$ and $\min\{p_1, p_2, q_1, q_2\} = 1$ or/and $\max\{p_1, p_2, q_1, q_2\} = \infty$. These limiting embeddings have not been considered in [7] or [27].

The methods that we use are different from those by Edmunds, Gurka and Lang [7] and by Triebel [27]. The techniques of [7] use the relationship between nuclearity and *s*-numbers (Bernstein and approximation numbers), while those of [27] are based on wavelet expansions for functions of $B_{p,q}^s(\Omega)$, periodic function spaces on \mathbb{T}^d and duality arguments. However, our methods only depend on the description in terms of wavelets for spaces $B_{p,q}^{s,\alpha}(\Omega)$ (see [1,4]) and the characterizations of nuclearity of diagonal operators between sequence spaces obtained by Tong [20].

2. Preliminaries

For $a \in \mathbb{R}$, we write $a_+ = \max\{a, 0\}$. Given two sequences $(a_j), (b_j)$ of non-negative real numbers we put $a_j \leq b_j$ if there is a constant c > 0 such that $a_j \leq c b_j$ for all $j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. If $a_j \leq b_j$ and $b_j \leq a_j$, we write $a_j \sim b_j$.

Let A_0 , A_1 be Banach spaces continuously embedded in a Hausdorff topological vector space \mathcal{A} . Given $0 < \theta < 1$, $\gamma \in \mathbb{R}$ and $1 \le q \le \infty$, the logarithmic interpolation space $(A_0, A_1)_{\theta, \gamma, q}$ is formed by all those $a \in A_0 + A_1$ which have a finite norm

$$\|a\|_{(A_0,A_1)_{\theta,\gamma,q}} = \left(\int_0^\infty \left(t^{-\theta}(1+|\log t|)^{-\gamma}K(t,a)\right)^q \frac{dt}{t}\right)^{1/q}$$

(as usual, the integral should be replaced by the supremum when $q = \infty$), where K(t, a) is the *K*-functional of Peetre, defined by

$$K(t, a) = \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1} : a = a_0 + a_1, a_j \in A_j\}$$

(see [10,8,5]). For $\gamma = 0$ we recover the classical real interpolation space $(A_0, A_1)_{\theta,q}$ realized as a *K*-space (see [2,21]). It is not hard to check that the logarithmic interpolation spaces have the interpolation property for bounded linear operators.

Let $1 \le p \le \infty$ and $M \in \mathbb{N}$. We let ℓ_p be the usual space of scalar *p*-summable sequences with indices in \mathbb{N}_0 , and we write ℓ_p^M for the *M*-dimensional ℓ_p -space. For $1 \le q \le \infty$, $w_j > 0$ and $M_j \in \mathbb{N}$, the space $\ell_q(w_j \ell_p^{M_j})$ consists of all vector-valued sequences $x = (x_j)_{j \in \mathbb{N}_0}$ having a finite norm

$$\|x\|_{\ell_q(w_j\ell_p^{M_j})} = \left(\sum_{j=0}^{\infty} (w_j \|x_j\|_{\ell_p^{M_j}})^q\right)^{1/q}.$$

Download English Version:

https://daneshyari.com/en/article/8898474

Download Persian Version:

https://daneshyari.com/article/8898474

Daneshyari.com