
Journal of Complexity 47 (2018) 42–61

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Generalization properties of doubly stochastic
learning algorithms✩

Junhong Lin a,*,1, Lorenzo Rosasco a,b

a LCSL, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia, Cambridge, MA 02139, USA
b DIBRIS, Università degli Studi di Genova, Via Dodecaneso 35, Genova, Italy

a r t i c l e i n f o

Article history:
Received 4 July 2017
Accepted 30 January 2018
Available online 21 February 2018

Keywords:
Kernel method
Doubly stochastic algorithm
Nonparametric regression

a b s t r a c t

Doubly stochastic learning algorithms are scalable kernel methods
that perform very well in practice. However, their generalization
properties are not well understood and their analysis is challeng-
ing since the corresponding learning sequence may not be in the
hypothesis space induced by the kernel. In this paper, we provide
an in-depth theoretical analysis for different variants of doubly
stochastic learning algorithms within the setting of nonparametric
regression in a reproducing kernel Hilbert space and considering
the square loss. Particularly, we derive convergence results on gen-
eralization error for the studied algorithms either with or without
an explicit penalty term. To the best of our knowledge, the derived
results for the unregularized variants are the first of this kind,
while the results for the regularized variants improve those in the
literature. The novelties in our proof are a sample error bound that
requires controlling the trace norm of a cumulative operator, and a
refined analysis of bounding initial error.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In nonparametric regression, we are given a set of samples of the form {(xi, yi)}Ti=1, where each
xi ∈ Rd is an input, yi is a real-valued output, and the samples are drawn i.i.d. from an unknown
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distribution on Rd
× R. The goal is to learn a function which can be used to predict future outputs

based on the inputs.
Kernel methods [18,5,21] are a popular nonparametric technique based on choosing a hypothesis

space to be a reproducing kernel Hilbert space (RKHS). Stochastic/online learning algorithms [9,3]
(often called stochastic gradientmethods [14,12] in convexoptimization) are among themost efficient
and fast learning algorithms. At each iteration, they compute a gradient estimate with respect to a
new sample point and then updates the current solution by subtracting the scaled gradient estimate.
In general, the computational complexities for training are O(T + Td) in space and O(T 2d) in time, due
to the nonlinearity of kernel methods. In recent years, different types of online/stochastic learning
algorithms, either with or without an explicit penalty term, have been proposed and analyzed, see
e.g. [3,23,25,17,22,15,7,11] and references therein.

In classic stochastic learning algorithms, all sampling points need being stored for testing. Thus,
the implementation of the algorithm may be difficult in learning problems with high-dimensional
inputs and large datasets. To tackle such a challenge, an alternative stochastic method, called doubly
stochastic learning algorithmwas proposed in [6]. The new algorithm is based on the random feature
approach proposed in [13]. The latter result is based on Bochner’s theorem and shows that most
shift-invariant kernel functions can be expressed as an inner product of some suitable random
features. Thus the kernel function at each iteration in the original stochastic learning algorithm can
be estimated (or replaced) by a random feature. As a result, the new algorithm allows us to avoid
keeping all the sample points since it only requires generating the random features and recovers
past random resampling them using specific random seeds [6]. The computational complexities of
the algorithm are O(T ) (independent of the dimension of the data) in space and O(T 2d) in time.
Numerical experiments given in [6], show that the algorithm is fast and comparable with state-of-
the-art algorithms. Convergence results with respect to the solution of regularized expected risk
minimization were derived in [6] for doubly stochastic learning algorithms with regularization,
considering general Lipschitz and smooth losses.

In this paper, we study generalization properties of doubly stochastic learning algorithms in the
framework of nonparametric regression with the square loss. Our contributions are theoretical. First,
for the first time, we prove generalization error bounds for doubly stochastic learning algorithms
without regularization, either using a fixed constant step-size or a decaying step-size. Comparedwith
the regularized version studied in [6], doubly stochastic learning algorithms without regularization
do not involve the model selection of regularization parameters, and thus it may have some com-
putational advantages in practice. Secondly, we also prove generalization error bounds for doubly
stochastic learning algorithmswith regularization. Compared with the results in [6], our convergence
rates are faster and do not require the bounded assumptions on the gradient estimates as in [6],
see the discussion section for details. The key ingredients to our proof are an error decomposition
and an induction argument, which enables us to derive total error bounds provided that the initial
(or approximation) and sample errors can be bounded. The initial and sample errors are bounded
using properties from integral operators and functional analysis. The difficulty in the analysis is the
estimation of the sample error, since the sequence generated by the algorithm may not be in the
hypothesis space. The novelty in our proof is the estimation of the sample error involving upper
bounding a trace norm of an operator, and a refined analysis of bounding the initial error.

The rest of the paper is organized as follows. In Section 2, we introduce the learning setting we
consider and the doubly stochastic learning algorithms. In Section 3, we present the main results on
generalization properties for the studied algorithms and give some simple discussions. Section 4–7
are devoted to the proofs of all the main results.

2. Learning setting and doubly stochastic learning algorithms

Learning a function from a given finite number of instances through efficient and practical
algorithms is the basic goal of learning theory. Let the input space X be a closed subset of Euclidean
space Rd, the output space Y ⊆ R, and Z = X × Y . Let ρ be a fixed Borel probability measure on Z ,
with its induced marginal measure on X and conditional measure on Y given x ∈ X denoted by ρX (·)
and ρ(·|x) respectively. In statistical learning theory, the probability measure ρ is unknown, but only
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