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a b s t r a c t

This article is dedicated to the anisotropic sparse grid quadrature
for functions which are analytically extendable into an anisotropic
tensor product domain. Taking into account this anisotropy,we end
up with a dimension independent error versus cost estimate of the
proposed quadrature. In addition,weprovide a novel and improved
estimate for the cardinality of the underlying anisotropic index set.
To validate the theoretical findings, we present several examples
ranging from simple quadrature problems to diffusion problems
on random domains. These examples demonstrate the remarkable
convergence behavior of the anisotropic sparse grid quadrature in
applications.
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1. Introduction

This article is dedicated to the construction of anisotropic sparse grid quadrature methods for
functions which are analytically extendable into an anisotropic tensor product domain. Specifically,
we will develop and analyze a particular realization based on Gauss–Legendre quadrature rules.
Anisotropic sparse grid quadrature methods can be seen as a generalization of sparse Smolyak type
quadratures, cf. [31], since they are explicitly tailored to the anisotropic behavior of the underlying
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integrand. Taking into account these anisotropies leads to a remarkable improvement in the cost of
the sparse grid quadrature.

Usually, a sparse grid quadrature is described by some sparse index set and a sequence of
univariate quadrature rules. For the sequence of univariate quadrature rules, we employ Gauss–
Legendre quadratures with linearly increasing numbers of quadrature points. The index set is priorly
chosen with respect to a certain weight vector, which incorporates the anisotropy, and a predefined
approximation level. It is also possible to adaptively select those indices which provide the main
contribution to the integral, see [11]. Such adaptive methods have successfully been applied in
the context of random diffusion problems, see e.g. [7,23,28], in order to compute best N-term
approximations of the corresponding solution. However, the adaptive construction of index sets
is computational expensive and only heuristic error indicators are available. Hence, it can not be
guaranteed that the adaptively selected index set is optimal. Instead of choosing Gauss–Legendre
points, a sequence of nested quadrature rules such as Clenshaw–Curtis or Leja type quadratures could
be considered as well. While the number of quadrature points needs to be doubled for Clenshaw–
Curtis quadratures in order to guarantee their nestedness, only one additional quadrature point is
added for each consecutive member of the Leja sequence. Hence, based on the Leja sequence, a sparse
grid quadrature can be constructedwhere only one additional function evaluation is required for each
new multi-index in the sparse index set, cf. [13]. However, in contrast to Gaussian quadratures, the
quadrature weights of the Leja sequence are not necessarily positive which yields that the stability
constant of the quadrature might not be uniformly bounded. Moreover, Gaussian quadrature rules
provide a much higher degree of polynomial exactness than Leja quadratures with the same number
of quadrature points, which is particularly advantageous for smooth integrands.

The main task in estimating the quadrature’s cost is the estimation of the number of multi-indices
which are contained in the sparse index set. For the isotropic variant, the number of indices can
easily be determined by combinatorial arguments, see e.g. [10,26,32]. Things get more involved if
one considers anisotropic, i.e. weighted, sparse index sets, which yields a particular instance of a
weighted tensor product algorithm, see [33] and especially [27, Chapter 15], where a comprehensive
overview of related literature can be found. In this case, to the best of our knowledge, only very rough
estimates on the cardinality of the index set are known, although several estimates can be found in
the literature, see e.g. [4]. In fact, this problem is equivalent to the estimation of the number of integer
solutions to linear Diophantine inequalities, see [29] and the references therein, which is a problem in
number theory, or to the calculation of the integer points in a convex polyhedron. Current estimates
are not sharp anddonot provide improved results for the cost of the anisotropic sparse grid quadrature
in comparison with the anisotropic full tensor product quadrature. In this article, we prove a novel
formula to estimate the cardinality of the sparse index set in the weighted case. This formula is much
more accurate than the other established estimates.

A very popular application that requires efficient high-dimensional quadrature rules are para-
metric partial differential equations. They are obtained, for example, from partial differential equa-
tions with random data by truncating the series expansions of the underlying random fields and
parametrizing themwith respect to the random fields’ distribution. As representatives for such prob-
lems, we shall consider here elliptic diffusion problems with random coefficients as well as diffusion
problems on random domains as specific examples to quantify the performance of the anisotropic
sparse grid quadrature. The resulting quadrature approach is very similar to the anisotropic sparse
grid collocation method based on Gaussian collocation points which has been introduced in [24,25].
The collocation method interpolates the random solution in certain collocation points and represents
it in the parameter space with the aid of polynomials. Thus, it belongs to the class of non-intrusive
methods, cf. [1]. Instead of representing the random solution itself, the anisotropic sparse grid
quadrature can be employed to directly compute the solutions statistics, i.e. its moments, and
functionals of the solution.

The remainder of this article is organized as follows. Section 2 specifies the quadrature problem
under consideration and provides the corresponding framework. The subsequent Section 3 is dedi-
cated to the construction of the anisotropic sparse grid quadrature method. In particular, the main
ingredients, i.e. the index set and the sequence of univariate quadrature rules are introduced. In
Section 4, we provide corresponding error estimateswith respect to the level of the anisotropic sparse
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