Accepted Manuscript

Tractability properties of the weighted star discrepancy of regular grids

Friedrich Pillichshammer

PII: \quad S0885-064X(17)30117-6

DOI: https://doi.org/10.1016/j.jco.2017.12.003
Reference: YJCOM 1353

To appear in: Journal of Complexity

Received date: 22 September 2017
Accepted date: 14 December 2017

Please cite this article as: F. Pillichshammer, Tractability properties of the weighted star discrepancy of regular grids, Journal of Complexity (2017), https://doi.org/10.1016/j.jco.2017.12.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tractability properties of the weighted star discrepancy of regular grids

Friedrich Pillichshammer*

Abstract

In this paper we study tractability properties of the weighted star discrepancy with general coefficients of centered regular grids with different mesh-sizes. We give exact characterizations of the weight sequences $\left(\gamma_{j}\right)_{j \geq 1}$ such that the regular grid with different mesh-sizes achieves weak, uniform weak, quasi polynomial, polynomial or strong polynomial tractability for the γ-weighted star discrepancy. For example, a necessary and sufficient condition such that the regular grid with different mesh-sizes achieves weak tractability for the γ-weighted star discrepancy is $\lim _{j \rightarrow \infty} j \gamma_{j}=0$.

Keywords: weighted star discrepancy, tractability, regular grid, quasi-
Monte Carlo
MSC 2010: 11K38, 11K45, 65C05

1 Introduction

In this short paper we study the weighted star discrepancy of the centered regular grid with different mesh-sizes m_{1}, \ldots, m_{d} in dimension d, given by

$$
\Gamma_{m_{1}, \ldots, m_{d}}=\left\{\left(\frac{2 \ell_{1}+1}{2 m_{1}}, \ldots, \frac{2 \ell_{d}+1}{2 m_{d}}\right): \ell_{j} \in\left\{0,1, \ldots, m_{j}-1\right\} \text { for } j=1, \ldots, d\right\},
$$

where $m_{1}, m_{2}, \ldots, m_{d} \in \mathbb{N}$ are the mesh-sizes for the single coordinate directions.
It may make one wonder why the discrepancy of regular grids is worth to be studied since it is well known that the (classical, i.e., unweighted) star discrepancy of regular grids is far from being of optimal order (see, e.g. [9, Remark 2.20]). However, in several recent papers it turned out, that the use of regular grids with different mesh-sizes in the context of numerical integration and approximation in weighted spaces of infinitely smooth functions leads to optimal results (e.g., exponential convergence rates or various notions of tractability); see $[3,4,8]$. These findings motivate the study of the weighted star discrepancy of regular grids. Clearly, in the unweighted case the star discrepancy of

[^0]
https://daneshyari.com/en/article/8898523

Download Persian Version:

https://daneshyari.com/article/8898523

Daneshyari.com

[^0]: *F. Pillichshammer is supported by the Austrian Science Fund (FWF) Project F5509-N26, which is a part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications". The support of the Erwin Schrödinger International Institute for Mathematics and Physics (ESI) under the thematic programme "Tractability of High Dimensional Problems and Discrepancy" is gratefully acknowledged.

