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a b s t r a c t

Let d and k be positive integers. Let µ be a positive Borel measure
onR2 possessing finitemoments up to degree 2d−1. If the support
of µ is contained in an algebraic curve of degree k, then we show
that there exists a quadrature rule for µ with at most dk many
nodes all placed on the curve (and positive weights) that is exact
on all polynomials of degree at most 2d − 1. This generalizes both
Gauss and (the odd degree case of) Szegő quadrature where the
curve is a line and a circle, respectively, to arbitrary plane algebraic
curves. We use this result to show that, without any hypothesis
on the support of µ, there is always a cubature rule for µ with at
most 3

2d(d − 1) + 1 many nodes. In both results, we show that
the quadrature or cubature rule can be chosen such that its value
on a certain positive definite form of degree 2d is minimized. We
characterize the unique Gaussian quadrature rule on the line as
the one that minimizes this value or several other values as for
example the sum of the nodes’ distances to the origin. The tools
we develop should prove useful for obtaining similar results in
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higher-dimensional cases although at the present stage we can
present only partial results in that direction.

© 2017 Elsevier Inc. All rights reserved.

1. Motivation

Initially designating the computation of areas and volumes, the terms quadrature and cubature
now often stand for the numerical computation of one-dimensional and two-dimensional integrals,
respectively. As a generic term for integrals over arbitrary dimension, the term quadrature seems to
be more often used than cubature. We will formally use both terms synonymously but use the latter
term only when the support of µ is a subset of R2.

By a measure on Rn we always understand a nonnegative (i.e., unsigned) Borel measure on Rn.
Its support is the smallest closed subset of Rn whose complement has measure zero. Suppose µ is
a measure on Rn and f is a measurable real valued function whose domain contains the support
of µ and whose integral with respect to µ exists and is finite. The aim is to compute the integral
of f numerically, i.e., the computation should be fast and should yield a good approximation of the
actual integral. Ideally, one should be able to have an error estimate for the approximation and black
box access to f should be enough (in particular no information on potentially existing derivatives or
primitives of f is needed).

A classical way of achieving this are quadrature rules [10]. They consist of finitely many points in
Rn called nodes together with associated real numbers called weights. The hope is that the weighted
sum of the function values at the nodes approximates well the integral of f with respect to µ (in the
actual computation one has to deal with floating approximations, of course). It is not indispensable
but highly desirable that all weights are positive since this reflects the monotonicity of the integral,
increases numerical stability and usually allows for tighter error estimates [23, Conclusion 3.19].

We will therefore always insist on the weights to be positive.
Fix a nonnegative integer d such thatµpossesses finitemoments up todegree d, i.e., all polynomials

of degree ≤ d have a finite integral with respect to µ. Then a quadrature rule for µ is often designed
to yield the exact value for the integral of an arbitrary polynomial of degree at most d with respect to
µ. In this way, for any function f that can be well-approximated by a polynomial of degree at most d,
simultaneously

• on the support of µ or at least where ‘‘most of the mass of µ lies’’ (i.e., on a measurable subset
of the support of µwhose complement has reasonably small measure) and

• on the nodes of the quadrature rule,

one and the same quadrature rule will give a good approximation for the integral. In practice, one
often works with small degree of exactness d by splitting the domain of integration into many parts
and integrating over each part separately. One thus often has a good polynomial approximation of low
ormoderate degree with a good error analysis, e.g., by Taylor or Bernstein approximation. Neither the
subdivision (which can be adaptive to the problem) nor the error analysis is addressed in this article.

Note that one usually would not want to, could not, need not and does not compute a polynomial
approximation of f . Thus the real aim of a quadrature rule is not to integrate polynomials which is an
easy task anyway, as soon as the relevant moments of the measure are known. However, quadrature
rules should be designed to handle this easy task in the best possible way. That is why this article like
a big part of the literature about quadrature is about integrating polynomialswith quadrature rules.

Of course, it is important to have a small number of nodes to speed up the computation, especially
when calculating nested multiple integrals with respect to the same measure.

In addition, nodes that are far away from the origin should be evitated. Note that, due to the
assumption on the finiteness of the moments up to some degree, usually most of the mass of the
measure cannot lie too far from the origin and therefore it seems unlikely that the given function f
could be approximated at the same time on ‘‘most of the mass of µ lies’’ and at ‘‘nodes that are far
out’’. Indeed, at first sight, it seems reasonable to require that all nodes lie in the support ofµ. Wewill
however give up on this frequently made requirement for one bad and several good reasons:
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