On the dispersion of sparse grids

David Krieg
Mathematisches Institut, University of Jena, Ernst-Abbe-Platz 2, 07740 Jena, Germany

ARTICLE INFO

Article history:

Received 18 September 2017
Accepted 8 November 2017
Available online xxxx

Keywords:

Dispersion
Largest empty box
Sparse grid
High dimensional problems

Abstract

For any $d \in \mathbb{N}$ and $\varepsilon \in(0,1)$, we present a point set in the d-dimensional unit cube $[0,1]^{d}$ that intersects every axis-aligned box of volume greater than ε. This point set is very easy to handle and in a vast range for ε and d, we do not know any smaller set with this property.

© 2017 Elsevier Inc. All rights reserved.

1. The result

The dispersion of a point set P in $[0,1]^{d}$ is the volume of the largest axis-aligned box in $[0,1]^{d}$ which does not intersect P, that is

$$
\operatorname{disp}(P)=\sup \left\{|B|: B \subset[0,1]^{d} \text { box with } B \cap P=\emptyset\right\} .
$$

Here, a set $B \subset \mathbb{R}^{d}$ is called a box if it is the Cartesian product of d open intervals. Its volume $|B|$ is the product of the interval lengths. Point sets with small dispersion already proved to be useful for the uniform recovery of rank one tensors [4] and for the discretization of the uniform norm of trigonometric polynomials [9]. Recently, great progress has been made in the question for the minimal size for which there exists a point set whose dispersion is at most ε, see Dumitrescu and Jiang [3], Aistleitner, Hinrichs and Rudolf [1], Rudolf [7], Sosnovec [8] and Ullrich and Vybíral [10]. In this note, we shall provide a small point set that achieves the desired dispersion. This point set has a simple geometric structure. It is generated by the one-dimensional sets

$$
M_{j}=\left\{\frac{1}{2^{j+1}}, \frac{3}{2^{j+1}}, \ldots, \frac{2^{j+1}-1}{2^{j+1}}\right\}
$$

[^0]

Fig. 1. The point set $P(3,2)$. This picture shows the set $P(k, d)$ of order 3 in dimension 2 . The largest empty box has the volume $1 / 16$, the size of 16 of the little squares. If any of the 32 points is removed, an empty box of volume $1 / 8$ emerges.
for $j \in \mathbb{N}_{0}$. The d-dimensional point set of order $k \in \mathbb{N}_{0}$ is defined as

$$
P(k, d)=\bigcup_{|j|=k} M_{j_{1}} \times \cdots \times M_{j_{d}},
$$

where we write $|\boldsymbol{j}|=j_{1}+\ldots+j_{d}$ for $\boldsymbol{j}=\left(j_{\ell}\right)_{\ell=1}^{d}$ in \mathbb{N}_{0}^{d}. A picture of the set of order 3 in dimension 2 can be found in Fig. 1. These point sets are particular instances of a sparse grid as widely used for high-dimensional numerical integration and approximation. We refer to Novak and Woźniakowski [5] and the references therein. Here, we will prove the following result.

Theorem. Let $\varepsilon \in(0,1)$ and $d \geq 2$. If we choose $k(\varepsilon)=\left\lceil\log _{2}\left(\varepsilon^{-1}\right)\right\rceil-1$, the dispersion of the set $P(k(\varepsilon), d)$ is at most ε and its size is given by

$$
|P(k(\varepsilon), d)|=2^{k(\varepsilon)}\binom{d+k(\varepsilon)-1}{d-1}
$$

Note that $|P|$ refers to the number of elements of P, if the set P is finite. The formula for $|P(k(\varepsilon), d)|$ may be simplified. On the one hand, we have

$$
|P(k(\varepsilon), d)| \leq \varepsilon^{-1}\left\lceil\log _{2}\left(\varepsilon^{-1}\right)\right\rceil^{d-1}
$$

which shows that the size roughly grows linearly in $1 / \varepsilon$ for a fixed dimension d. On the other hand,

$$
|P(k(\varepsilon), d)| \leq(2 d)^{k(\varepsilon)},
$$

which shows that the size grows at most polynomially in d for a fixed error tolerance ε. Although very simple, $P(k(\varepsilon), d)$ is the smallest explicitly known point set in $[0,1]^{d}$ with dispersion at most ε for many instances of ε and d, see Section 3 .

2. The proof

In the following, we write $[d]=\{1, \ldots, d\}$ for each $d \in \mathbb{N}$. The vector $\boldsymbol{e}_{\ell} \in \mathbb{R}^{d}$ has entry 1 in the ℓ th and 0 in all other coordinates. We start with computing the number of elements in $P(k, d)$ for $k \in \mathbb{N}_{0}$ and $d \in \mathbb{N}$.

https://daneshyari.com/en/article/8898531

Download Persian Version:

https://daneshyari.com/article/8898531

Daneshyari.com

[^0]: Communicated by J. Prochno.
 E-mail address: david.krieg@uni-jena.de.
 https://doi.org/10.1016/j.jco.2017.11.005
 0885-064X/© 2017 Elsevier Inc. All rights reserved.

