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1. The result

The dispersion of a point set P in [0, 1]¢ is the volume of the largest axis-aligned box in [0, 1]¢
which does not intersect P, that is

disp(P) = sup {|B| : B C [0, 1] box with BN P = ¢} .

Here, a set B C RY is called a box if it is the Cartesian product of d open intervals. Its volume |B|
is the product of the interval lengths. Point sets with small dispersion already proved to be useful
for the uniform recovery of rank one tensors [4] and for the discretization of the uniform norm of
trigonometric polynomials [9]. Recently, great progress has been made in the question for the minimal
size for which there exists a point set whose dispersion is at most ¢, see Dumitrescu and Jiang [3],
Aistleitner, Hinrichs and Rudolf [ 1], Rudolf [7], Sosnovec [8] and Ullrich and Vybiral [10]. In this note,
we shall provide a small point set that achieves the desired dispersion. This point set has a simple
geometric structure. It is generated by the one-dimensional sets
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Fig. 1. The point set P(3, 2). This picture shows the set P(k, d) of order 3 in dimension 2. The largest empty box has the volume
1/16, the size of 16 of the little squares. If any of the 32 points is removed, an empty box of volume 1/8 emerges.

for j € Ng. The d-dimensional point set of order k € Ny is defined as

P(k,d):UMh XX M;
lil=k

d°

where we write |[j| = j; + ... +jq forj = (j[)jzl in Ng. A picture of the set of order 3 in dimension
2 can be found in Fig. 1. These point sets are particular instances of a sparse grid as widely used for
high-dimensional numerical integration and approximation. We refer to Novak and WoZniakowski [5]
and the references therein. Here, we will prove the following result.

Theorem. Let ¢ € (0,1)and d > 2. If we choose k(¢) = [log, (¢7')| — 1, the dispersion of the set
P(k(e), d) is at most & and its size is given by

d+k(e)—1
IP(KGe), d)] = 2K ( + ke) )
d—1
Note that |P| refers to the number of elements of P, if the set P is finite. The formula for |P(k(e), d)|

may be simplified. On the one hand, we have

IP(k(s), d)] < & '[log, ()],
which shows that the size roughly grows linearly in 1/¢ for a fixed dimension d. On the other hand,

P(k(e), d)| < (2d)),

which shows that the size grows at most polynomially in d for a fixed error tolerance . Although very
simple, P(k(e), d) is the smallest explicitly known point set in [0, 1]¢ with dispersion at most ¢ for
many instances of ¢ and d, see Section 3.

2. The proof
In the following, we write [d] = {1, ..., d} foreach d € N. The vector e; € R? has entry 1in the £th

and 0 in all other coordinates. We start with computing the number of elements in P(k, d) for k € Ny
andd € N.
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