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a b s t r a c t

For ε ∈ (0, 1/2) and a natural number d ≥ 2, let N be a natural
number with

N ≥ 29 log2(d)
(
log2(1/ε)

ε

)2

.

We prove that there is a set of N points in the unit cube [0, 1]d,
which intersects all axis-parallel boxes with volume ε. That is, the
dispersion of this point set is bounded from above by ε.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in bounds on the volume of the largest axis-parallel box that does not contain
any point from a given finite point set P ⊂ [0, 1]d. Moreover, we would like to find a point set such
that this volume is as small as possible. To be precise, we define, for d ∈ N and a point set P ⊂ [0, 1]d,
the dispersion of P by

disp(P) := sup
B:B∩P=∅

|B|,

where the supremum is over all axis-parallel boxes B = I1 ×· · ·× Id with intervals Iℓ ⊂ [0, 1], and |B|
denotes the (Lebesgue) volume of B. Moreover, for n, d ∈ N, let the nth-minimal dispersion be defined
by

disp(n, d) := inf
P⊂[0,1]d :

#P=n

disp(P)
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and, for ε ∈ (0, 1), define its inverse function

N(ε, d) := min
{
n : disp(n, d) ≤ ε

}
.

These quantitieswere introduced byRote and Tichy [14] (as amodification of a quantity considered
by Hlawka [6]) and attracted quite a lot of attention in the past years in the context of information-
based complexity theory, where the explicit dependence of certain geometric quantities on the
dimension d plays a crucial role. Bounds on the dispersion (or any of its variants) translate into bounds
on worst-case errors (and hence complexity bounds) for several numerical problems. These include
optimization in different settings [9,21], approximation of high-dimensional rank-1 tensors [2,12]
and, very recently, approximation of Lp-norms and Marcinkiewicz-type discretization [17–19]. How-
ever, it is still not clear so far, if there exists a numerical problem that corresponds to the dispersion
in the same way as the discrepancy corresponds to numerical integration, see e.g. [3–5,10,11,13].

Besides this, the dispersion is clearly an interesting geometric quantity on its own. It is easy to
define and one might think it is also simple to tackle. But, as the dispersion still resists a precise
analysis, this does not seem to be the case. However, there are several upper and lower bounds on
the minimal dispersion, most of which were established in the past three years. Here we comment
briefly on the state of the art.

First of all, it is quite easy to see that theminimal dispersion is of order n−1 for all d. The best bounds
of this order so far, which show also an explicit dependence on d, are

log2(d)
4(n + log2(d))

≤ disp(n, d) ≤
Cd

n

for some constant C < ∞. The lower bound is due to Aistleitner et al. [1] and the upper bound
was obtained by Larcher [8] (see [1, Section 4] for the proof). Concerning the dependence on the
dimension d, we see that the above bounds are far frombeing tight. However, itwas recently proved by
Sosnovec [16], that (surprisingly) the logarithmic dependence in the lower bound is sharp. He proved
that, for every fixed ε > 0,

N(ε, d) ≤ cε log2(d).

However, in this bound the ε-dependence is far off. Further results on the dispersion are polynomial
(in d and 1/ε) bounds by Rudolf [15] (see Remark 1) and an explicit construction based on sparse grids
by Krieg [7]. Interestingly, a lower bound linear in dwas recently obtained by one of the authors [20]
in the periodic setting.

It seems reasonable to conjecture that disp(n, d) ≍ log2(d)/n. However, it is not yet clear if this
bound can hold for all n and d.

In this article we refine the analysis of [16] paying attention to the ε-dependence and narrow the
existing gap. We prove an upper bound on the inverse of the minimal dispersion that is logarithmic
in d and almost quadratic in 1/ε.

Theorem 1. Let d ≥ 2 be a natural number and ε ∈ (0, 1/2). Then there exists a point set P ⊂ [0, 1]d
with disp(P) ≤ ε and

#P ≤ 27 log2(d)

(
1 + log2(ε−1)

)2
ε2 .

Clearly, the right hand side is bounded above by the N given in the abstract. Moreover, Theorem 1
directly implies the following.

Corollary 2. For n, d ∈ N with n ≥ 2 and d ≥ 2 we have

disp(n, d) ≤ c log2(n)

√
log2(d)

n
for some absolute constant c > 0.



Download English Version:

https://daneshyari.com/en/article/8898533

Download Persian Version:

https://daneshyari.com/article/8898533

Daneshyari.com

https://daneshyari.com/en/article/8898533
https://daneshyari.com/article/8898533
https://daneshyari.com

